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1. Introduction 

The volatility index, sometimes called by financial professionals and academics as 

“the investor gauge of fear” has developed overtime to become one of the highlights 

of modern day financial markets. Due to the many financial mishaps during the last 

two decades such as LTCM (Long Term Capital Management), the Asian Crisis just 

to name a few and also the discovery of the volatility skew, many financial experts 

are seeing volatility risk as one of the prime and hidden risk factors on capital 

markets. This paper will mainly emphasize on the developments in measuring and 

estimating volatility with a concluding analysis of the historical time series of the new 

volatility indices at the Deutsche Boerse. 

As a result of the volatility’s increasing importance as a risk indicator and hedging 

instrument, many financial market operators and their institutional clients have 

pioneered and ventured out into developing methods of estimating and measuring 

volatility based on various well established academic models and eventually have 

even based their estimations on self-made models. Some established models have 

proven not to withstand the test of time and empirical data. The Black-Scholes 

Options Pricing model for instance, does not allocate for stochastic volatility (i.e. 

skewness). On the other hand, two models have gained importance over the years, 

namely the Stochastic Volatility Model and the GARCH (1,1). An insight into these 

three models will be carried out in this paper. 

Two measurements which are widely used by financial and risk management 

practitioners to determine levels of volatility risk are the historical (realized) volatility, 

and the implied volatility. These two perspectives of volatility will be viewed with the 

emphasis being placed on the latter. 

Two volatility trading strategies would be introduced, namely the straddle and trading 

in volatility and variance swaps. Then the old and new methodologies of calculating 

the volatility index at the Deutsche Börse AG will be discussed and the business case 

behind the concept of a volatility index will then be presented. Finally an analysis and 

interpretation of the calculated historical time series between years 1999 and 2004 of 

the new volatility indices will be done. 
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2. Volatility and its Measurements 

An option is a financial contract which gives the right but not the obligation to buy 

(call) or to sell (put) a specific quantity of a specific underlying, at a specific price, on 

(European) or up to (American), a specified date. Such an option is called a plain 

vanilla option. An underlying of an option could be stocks, interest rate instruments, 

foreign currencies, futures or indices. Option buyers (long positions) usually pay an 

option premium (option price) to the option seller (short positions) when entering into 

the option contract. In return, the seller of the option agrees to meet any obligations 

that may occur as a result of entering the contract.  

The options called exotics include Path-dependent options whereby its payoffs are 

dependent on the historical development of the underlying asset, such as the 

average price (Asian Option) or the maximum price (Lookup option) over some 

period of time. Then there are other options in which their payoffs are anchored on 

whether or not the underlying asset reaches specified levels during the contractual 

period. They are called Barrier options.  Option traders are constantly faced with a 

dynamically altering volatility risk. While many speculate on the course volatility will 

take in the near future, some may tend to seek to hedge this risk. For instance Carr 

and Madan1 suggested a strategy that combines the holding of static options, all the 

out-of-the money ones, and dynamically trading the underlying asset. Such a strategy 

is very costly and most of the time not convenient for most traders. That’s why 

advances have been made to develop new products and strategies which allow 

investors and traders to hedge their portfolios of derivative assets as well as portfolio 

of basic assets against pure volatility exposure. Brenner and Galai2 were one of the 

first researchers to suggest developing a volatility index back in 1989.  

Then in 1993, Robert Whaley developed the first volatility index on S&P 100 options 

for the Chicago Board of Options Exchange (CBOE) which was then subsequently 

introduced in the same year. Called the VIX, it used the model described by Harvey 

and Whaley [1992]3 in their research article.  One year afterwards in December 1994, 

the Deutsche Boerse started publishing its own volatility index on DAX options called 

                                                 
1 Carr, P. and D. Madan, 1998 “Towards a Theory of Volatility Trading”, Volatility: New Estimation 
Techniques for Pricing Derivatives, R. Jarrow editor, Risk Books, London, 417-427. 
2 Brenner, M. and D. Galai, 1989, „New Financial Instruments for Hedging Changes in Volatility“, 
Financial Analyst Journal, July/August, 61-65 
3 Harvey, C.R. and R.E. Whaley, 1992, “Dividends and S&P 100 index option valuation”, Journal of 
Futures Markets 12(2), 123-137 
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the VDAX on a daily basis. The Deutsche Boerse even went on further to introduce 

the first futures on volatility based on the VDAX called VOLAX in 1998.  

To understand the concept behind a volatility index one must first understand the 

differences between the methods of volatility measurements and their forecasting 

abilities. Using the formula derived by Black and Scholes4 to price options, one needs 

among other things, the parameter volatility. They derived a formula for plain vanilla 

options using the parameters listed below as input. 

1. The current price of the underlying at time t = S  

2. The strike price of the option = K 

3. The time to expiration of the option = tT −  

4. The risk free interest rate = r  

5. The annualized volatility of the underlying (based on lognormal returns) = σ  

),()( 2
)(

1 dNKedSNC tTr −−−=   

,
2
1

)( 2/2

∫
∞−

−=
d

x dxedN
π

    

,
))(2/()/ln( 2

1
tT

tTrKS
d

−
−++

=
σ

σ
  ,12 tTdd −−= σ   

Equation 1:  Black Scholes Option Pricing Model- Explicit Solution for a Call Price  
 

Of all these parameters, only volatility is not observable in the market. As a result a 

large number of researches on estimating and forecasting volatility over the past 

decades have taken place. GivenC , i.e. (the observable current market price of the 

underlying asset) one can equate the implied volatility using the Black and Scholes 

formula illustrated above. This is a typical method of estimating the volatility for a 

given underlying. Suppose a call option on the underlying is actively traded, then the 

option price is readily obtainable. So in equation (1) above, one calculates the 

(implied) volatility which would have been used within the formula to give the current 

market prices as the result. Such an implied volatility can then be used to price other 

options on that same underlying which are not frequently actively traded or for which 

prices are not normally available.  

 

 

                                                 
4 Black, F. and M. Scholes, 1973, “The pricing of options and corporate liabilities”, Journal of Political 
Economy 81, 637-659.  



 8 

The Black and Scholes model assumes constant volatility, however observed market 

prices for identical options with different strikes (exercise prices) and maturities show 

the opposite. Actual market observations conveyed skewness (smile) of volatility i.e. 

identical options with different strikes possessing different implied volatilities. More 

insight to the Black and Scholes formula will occur later on in this paper.  

Volatility, standard deviation and risk are sometime used interchangeably by financial 

practitioners but in fact there are some conceptual differences. Poon and Granger5 in 

there research article clarifies that in Finance, volatility is used to refer to standard 

deviation,σ  or variance, 2σ  calculated from a set of observations. They further go on 

to state that the sample standard deviation in the field of Statistics is a distribution 

free parameter depicting the second moment characteristic of the sample data. When 

σ  is attached to a standard distribution, like that of the normal or the Student- t  

distributions, only then can the required probability density and cumulative probability 

density be analytically derived. As a scale parameter,σ  factorizes or reduces the 

size of the fluctuations generated by the Wiener process (which is assumed in the 

Black-Scholes model and other option pricing model) in a continuous time setting. 

The pricing dynamic of the pricing model is heavily dependent on the dynamic of the 

underlying stochastic process and whether or not the parameters are time varying. 

That’s why Poon and Granger go on to point out that it is meaningless to useσ as a 

risk measure unless it is attached to a distribution or a pricing dynamic. For example, 

in the Black and Scholes model a normal distribution )(dN  is assumed, as shown in 

equation (1). 

Generally there are two methodologies for estimating volatility. As mentioned above, 

implied volatility reflects the volatility of the underlying asset given its market’s option 

price. This volatility is forward looking. The second method is that of the historical or 

realized volatility. This is derived from recent historical data of annualized squared 

log returns of the option prices observed in the past on the options market. The main 

question in modern day research on volatility is to find out which one of the two 

measurements of volatility is better at forecasting true market volatility. Since there 

are several methods of calculating these two forms of volatility measurements, at this 

point a closer look at different methods of volatility measurement will be discussed 

below.   

                                                 
5 Poon, S-H and C. Granger, 2002, “Forecasting volatility in financial markets: a review”, 1-10 
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2.1 Historical (Realized) Volatility  

The three methodologies which will be looked at in this section to estimate historical 

volatility are the most discussed in financial literature. The first is called the Close-

Close Volatility Estimator which is also known as the “classical” estimator. Then there 

is the High-Low Volatility Estimator from Parkinson6, which is considered by many to 

be far superior to the classical method because it incorporates the intraday high and 

low prices of the financial asset into its estimation of volatility. The third method of 

historical volatility estimation is the High-Low-Open-Close Volatility Estimator first put 

forward by Garman and Klass7 [1980]. The latter two estimators are considered to be 

extreme-value estimators of volatility.  

 

2.1.1 Close-Close Volatility Estimator 

Before the estimators of historical volatility are introduced, the fundamental 

assumptions on which the estimation procedures are built upon will be introduced at 

this point. These assumptions are widely accepted today by financial faculties8. The 

random walk 9 has been used to describe the movement of stock prices for quite 

sometime now, even before Brownian motion. Even Black and Scholes10 used the 

good approximation of a random walk in stock prices by implementing Sln  in their 

Noble Prize winning option pricing formula. In his paper, Parkinson11 utilizing some 

fundamentals of Statistical Physics compared the diffusion constant with that of the 

variance of stock price movement in the financial markets. He goes on to state, 

“Suppose a point particle undergoes a one-dimensional, continuous random walk 

with a diffusion constant D .  

 

 

                                                 
6 Parkinson M., 1980, “The Extreme Value Method for Estimating the Variance of the Rate of Return”, 
Journal of Business, 1980, Volume 53 (No. 1), 61-65. 
7 Garman M.B., M.J. Klass, 1980, “On the Estimation of Security Price Volatility from Historical Data”, 
Journal of Business, 1980, Vol. 53 (No. 1), 67-78. 
8 See articles referred to in endnotes 6 and 7. 
9 Cootner, P., ed. 1964, “The Random Character of Stock Prices”, Cambridge Mass., MIT Press. 
10 Black, F. and M. Scholes, 1973, “The pricing of options and corporate liabilities”, Journal of Political 
Economy 81, 637-659. 
11 Parkinson M., 1980, “The Extreme Value Method for Estimating the Variance of the Rate of Return”, 
Journal of Business, 1980, Volume 53 (No. 1), p. 62. 
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Then, the probability of finding the particle in the interval ),( dxxx + at timet , if it 

started at point 0x at time 0=t , is 






 −−
Dt

xx

Dt

dx o

2
)(

exp
2

2

π
. By comparison with the 

normal distribution, we see that D  is the variance of the displacement 0xx −  after a 

unit time interval. This suggests the traditional way to estimate D… Then, defining 

id = displacement during the i th interval, niixixd i ,...,2,1),1()( =−−= , we have  

 

∑
=

−
−

=
n

i
ix dd

n
D

1

2)(
1

1
  

Equation 2: Diffusion Constant 

as an estimate for D ; 

 

=
−

= ∑
=

n

m
md

n
d

11
1

mean displacement.” 

 

Using this approach the transformed (logarithmic) price, changes over any time 

interval in a normally distributed manner12 with mean zero and variance proportional 

to the length of the interval and exhibits continuous sample paths. But it is not 

assumed that these paths may be observed everywhere. This is due to the 

restrictions that trades often occur only at discrete points in time and exchanges are 

normally closed during certain periods of time. Therefore having a series of stock 

prices ),...,,( 121 +nSSS which are quoted at equal intervals of unit of time; equaling 

,...2,1),ln( 1 == + i
S

S
r

i

i
i , r = mean rate of return is zero, annual number of trading days = 

252 days and n = rate of return over i th time interval, then the annualized Close-

Close Estimator ccσ is simply the classical definition of standard deviation which also 

happens to be the square root of the diffusion constant definition D (see equation (4) 

above). 

∑
=

=
n

i
icc r

n 1

2.
1

.252σ    

Equation 3: Close-Close Volatility Estimator 

                                                 
12 Garman M.B., M.J. Klass, 1980, “On the Estimation of Security Price Volatility from Historical Data”, 
Journal of Business, 1980, Vol. 53 (No. 1), 67-78. 



 11 

This is the easiest method to estimate volatility. This formula, as shown above, only 

uses the market closing prices i.e. their logarithms to estimate the volatility. Garman 

and Klass13 mentioned that advantages of the Close-Close estimator are it’s 

simplicity of usage and its freedom from obvious sources of error and bias on the part 

of market activity. The most critical disadvantage of this estimator is its inadequate 

usage of readily available information such as opening, closing, high and low daily 

prices in its estimation. Such information could contribute to more efficiency in 

estimating volatility. 

 

2.1.2 High-Low Volatility Estimator 

Staying with the assumption made above Parkinson14 introduced one of the first and 

widely accepted extreme value methods of estimating volatility. In his article he 

concluded that the diffusion constant of the underlying random walk of the stock price 

movements is the true variance of the rate of return of a common stock over a unit of 

time.  He also proved in his article that the use of extreme values in estimating the 

diffusion constant provides a significantly better estimate. So he then recommended 

that estimates of variance of the rate of return should also make use of this extreme 

value method. 

He goes on further to add that due to the fact daily, weekly and monthly highs )(H and 

lows )(L of prices of equities are readily available; it should be very easy to apply in 

practice. So using extreme values (i.e. minimum and maximum values) to estimate 

the diffusion constant, ceteris paribus, then let lxx ≤− )( minmax during time interval t. 

To ensure that the observed set ),...,,( 21 nlll originates from a random walk of the kind 

mention above, the factor
2ln4

1
 is used15. Hence the extreme value estimate for the 

diffusion constant D  is: 

∑
=

=
n

i
il l

n
D

1

21
.

2ln4
1

  

      Equation 4: Extreme Value Diffusion Constant 

                                                 
13 See footnote 12. 
14 Parkinson M., 1980, “The Extreme Value Method for Estimating the Variance of the Rate of Return”, 
Journal of Business, 1980, Volume 53 (No. 1), 61-65. 
15 See calculation of random walk test factor in: Parkinson M., 1980, “The Extreme Value Method for 
Estimating the Variance of the Rate of Return”, Journal of Business, 1980, Volume 53 (No. 1), 62-63.  
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Applying to the stock market let l = )ln(
L
H

and the annualized High-Low Volatility 

Estimator (square root of the diffusion constant definition) HLσ can be calculated 

using: 

∑
=

=
n

i i

i
HL L

H
n 1

2)ln(
252

.
2ln4

1
σ   

Equation 5: High-Low Volatility Estimator 

These extremes values give more detail of the movements throughout the period, so 

such an estimator is much more efficient than the Close-Close estimator. A practical 

importance of this approach is the improved efficiency due to the fact that fewer 

observations are necessary in order to obtain the same statistical precision as the 

Close-Close volatility estimator. 

 

2.1.3 High-Low-Open-Close Volatility Estimator 

Building on the Parkinson’s estimator, Garman and Klass16 introduced in their article 

an volatility estimator which incorporated not only the high and low historical prices 

but also the open and closing historical indicators of stock price movements in 

estimating variance and hence volatility. Their assumptions were the same as 

mentioned in section 2.1.1 but extended to include the assumption that stock prices 

follow a geometric Brownian motion. The annualized High-Low-Open-Close volatility 

estimator HLOCσ  from Garman and Klass is illustrated as 

     

 ( )∑
= 



















−−




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
=

n

i i

i

i

i
HLOC O

C
L
H

n 1

22

ln.12ln2ln.
2
1252
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   Equation 6: High-Low -Open-Close Volatility Estimator 

 

where by, 

O = opening price of the period 

C = closing price of the period 

 

 

                                                 
16 Garman M.B., M.J. Klass, 1980, “On the Estimation of Security Price Volatility from Historical Data”, 
Journal of Business, 1980, Vol. 53 (No. 1), 67-78. 
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The efficiency gains from this estimator are significantly more efficient than that of the 

Close-Close Estimator. The practical importance of this improved efficiency is that 

seven times fewer observations are necessary in order to obtain the same statistical 

precision as the Close-Close estimator17. The random variable volatility which is 

estimated has a tighter sampling distribution.  

At this point one should also mention that due to the fact that extreme value 

estimators of realized volatility are derived using strict assumptions, they may likely 

tend to be biased estimates of realized volatility although being more efficient than 

the classical Close-Close estimator18. 

 

2.2 Implied Volatility 

Implied volatility is the theoretical value which represents the future volatility of the 

underlying financial asset for an option as determined by today’s price of the option. 

Implied volatility can be implicitly derived by inversion using option pricing models. 

When the market price of the option is known one can simply calculate the (local) 

volatility that would have been used in the option pricing model to give the observed 

option price taken into consideration. The most famous pricing model is the Black 

and Scholes Option Pricing Model19.  First its derivation will be shown and then the 

calculation of it’s implied (local) volatility function by Dupire20. Bruno Dupire showed 

that if the stock price follows a risk neutral random walk and if no -arbitrage market 

prices for European vanilla options are available for all strikes K  and expiriesT , then 

the implied (local) volatility used as a variable within the option price model, can be 

expressed as a function of K and T .  

Due to the fact that empirical observations of options have shown that volatility does 

not remain constant as exercise price (strike) and expiries changes as assumed by 

Black and Scholes.  Modern day Finance researchers have moved on to the next 

level of precision and have incorporated stochastic volatility into their models. The 

second part of this section will deal with such stochastic volatility models, in 

particularly the Heston Stochastic Volatility Model. 

  
                                                 
17 See Garman M.B., M.J. Klass, 1980 
18 Li, K., D. Weinbaum, 2000, “The Empirical Performance of Alternative Extreme Value Volatility 
Estimators”, Working Paper, Stern School of Business, New York. 
19 Black, F. and M. Scholes, 1973, “The pricing of options and corporate liabilities”, Journal of Political 
Economy 81, 637-659. 
20 Dupire, B. 1994. “Pricing with a Smile”. Risk Magazine, 7 18-20. 
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2.2.1 Black-Scholes and Local Volatility Model 

Before the Black and Scholes partial differential equation (PDE) and its solution for 

an European call can be derived, certain assumptions have to be implemented.  

 

1. There are no market restrictions  

2. There is no counterparty risk and transaction costs 

3. Markets are competitive  

4. There are no arbitrage opportunities i.e. two identical assets cannot sell at 

difference prices; therefore there are no opportunities by market participants to 

make an instantaneous risk-free profit. 

5. Trading  takes places continuously over time 

6. Stock price follow a Brownian motion i.e. stock prices are random. 

7. Stock price follows a lognormal probability distribution 

8. Interest rates are constant 

9. In order to avoid complexity, dividend payments are not incorporated into the 

following analyses 

 

Ito’s Lemma can be used to manipulate random variables. It relates the small change 

in a function of a random variable to the small change in the random variable itself. In 

order to proceed with the derivation of the Black and Scholes formula on need to 

define the stochastic differential equation (SDE) of the form:  

 

     dWtXBdttXAdX ),(),( +=  

 

where ),( tXA is known as the drift term, ),( tXB  the volatility function and 

dW represents a Brownian motion. Thus if )(Xf be a smooth function, Ito’s lemma 

says that: 

dt
X

f
B

X
f

AdW
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f
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Thus adding the variable t  to )(Xf gives ),( tXf and Ito’s lemma says that: 

dt
t
f

X
f

B
X
f
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X
f

Bdf 
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Equation 7a: One Dimensional Ito’s Lemma 

 

Now if YX , are SDEs: 

1
ˆ),(),( WdtXBdttXAdX +=  

2
ˆ),(),( WdtYDdttYCdY +=  

 

whereby the two Brownian Motion instants have a correlation ρ , then for 

),,( tYXf Ito’s lemma says: 
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Y
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Equation 7b: Two Dimensional Ito’s Lemma 

 

Considering the following SDE where the average rate of growth of the stock, also 

known as the drift = µ  , and volatility = σ  and both are constants. Let stock price = S  

then: 

dWSdtSdS σµ +=  

Equation 8: Stochastic Equation of Small Change in S  

 

Suppose that )(Sf is a smooth function of S . So if S were to be varied by a small 

amount dS , then f would also vary by a small amount. Using the Taylor series 

expansion, one derives, 

)(...
2
1 32

2

2

dSOdS
S

f
dS

S
f

df +
∂
∂

+
∂
∂

=  

 

further generalizing this result and introducing the variable time to the function, we 

get ),( tSf . Imposing a small change on ),( tSf one derives ),( dttdSSf ++ which can 

be expanded using the Taylor Series Expansion to give:  

)(...
2
1 32

2

2

dSOdS
S

f
dt

t
f

dS
S
f

df +
∂
∂

+
∂
∂

+
∂
∂

=  

Equation 9: Taylor Series Expansion of  ),( dttdSSf ++  
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In equation (8) dS represents a small randomly change in the variable S (stock price). 

Squaring that we get:  
22222222 2 dWSdtdWSdtSdS σµσµ ++=  

Equation 10: Squared Stochastic Equation of Small Change in S  

If : 

,2 dtdW →  as 0→dt  

then the third term in 2dS  is the largest for small dt and therefore dominates the other 

terms.  

Therefore:  

dtSdS 222 σ=  

 

Substituting the above result into equation (9) results in: 

( ) dtS
S
f

dt
t
f

dWSdtSdW
S
f

df 22
2

2

22
1

σσµ
∂

∂
+

∂
∂

+++
∂
∂

=  

 

dt
t

df
S

f
S

S
f

SdW
S
f

S 







∂

+
∂
∂

+
∂
∂

+
∂
∂

= 2

2
22

2
1

σµσ  

 

At this step the hedging portfolio is introduced into the model. In its simplest form 

hedging against price movemnets entails taking a long (short) position in an option 

contract while simultaneously taking a short (long) position in the underlying financial 

asset. This can reduce the risk of the portfolio. One important hedging strategy is 

delta hedging. The delta ∆  of the option is defined as the change of the option price 

with respect to the change in the price of the underlying financial asset.  

Now Black-Scholes equation can be derived for an European option V  with an 

arbitrary payoff )(),( STSV Ψ= .  Forming a portfolio Π  which is delta-hedged 

(according to definition given above
S
V

∂
∂

=∆  ) with the delta -factor )( φ=
∂
∂

S
V

let  gives: 

SV φ−=Π  

the delta-factor is constant and makes the portfolio risk-free. A change in the value of 

the portfolio can be represented as: 

dSdVd φ−=Π  
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Suppose a change in the stock price S satisfies the following stochastic differential 

equation (SDE): 

dWSSrdtdS σ+=  

where the drift term µ  is represented by the risk-free bank rate r and the volatility of 

the stock is equal toσ .  

Applying the Ito’s lemma to V , one derives: 

dt
t

dV
S
V

S
S
V

SrdW
S
V

SdV 







∂

+
∂
∂

+
∂
∂

+
∂
∂

= 2

2
22

2
1

σσ , 

Therefore substituting values dV and dS into: 

dSdVd φ−=Π  

one gets: 

dt
t

dV
S
V

S
S
V

SrdW
S
V

Sd 







∂

+
∂
∂

+



 −

∂
∂

+



 −

∂
∂

=Π 2

2
22

2
1

σφφσ  

Equation 11: Small Change in Hedged Portfolio under Ito’s Lemma 

 

By substituting φ=
∂
∂

S
V

in equation (11) one derives a risk-free portfolio (risk-

neutralization) without the Brownian motion term dW which makes the equation 

deterministic (no randomness): 

dt
t

dV
S
V

Sd 







∂

+
∂
∂

=Π 2

2
22

2
1

σ  

 

Since this portfolio contains no risk it must earn the same as other short-term risk-

free financial assets. Following the principle of no-arbitrage, portfolio Π  must earn 

the risk-free bank rate r : 

dtrd Π=Π  
Equation 12: Risk-free Portfolio 

substituting SV φ−=Π into equation (12) one gets: 

,)( dtS
S
V

Vrd
∂
∂

−=Π  

and combining dt
t

dV
S
V

Sd 







∂

+
∂
∂

=Π 2

2
22

2
1

σ  with ,)( dtSVrd φ−=Π and dividing by dt , 

then rearranging one derives the Black-Scholes linear parabolic partial differential 

equation: 
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0
2
1

2

2
22 =−

∂
∂

+
∂
∂

+
∂

rV
S
V

rS
S
V

S
t

dV
σ  

Equation 13: Black-Scholes Partial Differential Equation 

 

Considering a European vanilla option that has boundary conditions (payoffs): 









→−
→−

=
PutsSK
CallsKS

TSV
)0,max(
)0,max(

),(  

 

The Black-Scholes PDE needs these boundary conditions in order to attain a unique 

solution. Deriving the explicit function of a European call ),( TSC gives: 

),()( 2
)(

1 dNKedSNC tTr −−−=  

where,  

,
2
1

)( 2/2

∫
∞−

−=
d

x dxedN
π

 

,
))(2/()/ln( 2

1
tT

tTrKS
d

−
−++

=
σ

σ
 ,12 tTdd −−= σ  

Equation 14: Explicit Solution of Black-Scholes PDE for a European Call 

 

where )(dN is the standard normal cumulative distribution function. The fact that only 

when deriving an explicit solution of the Black-Scholes PDE a derivative product is 

specified through the use of the boundary conditions, reiterates the advantage of the 

Black-Scholes  PDE in solving the pricing dilemma of several types of options.  

The explicit solution of ),()( 2
)(

1 dNKedSNC tTr −−−= which give the value of the option 

can be used, along with a numerical method like the Newton-Raphson Method to 

estimate the unique implied volatility of an option with option value C .  If one were to 

calculate different values of ),( TSC , i.e. always varying the strike K and expiration 

T one would observe a flat (constant) volati lity surface along strikes and expirations 

as shown in figure 1 below.  

But if real market data were to be used the volatility surfaces represented by the data 

would resemble that of figure 2. Financial markets exhibit several different patterns of 

volatility surfaces with varied strikes (skewness) and maturities (term structure). 

These patterns are known as the volatility smile or skew. Therefore the (Black-

Scholes) implied volatility for an option can be considered as the constant volatility 
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which when substituted in the Black-Scholes model ceteris paribus gives the 

observed market price of the option. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
Figure1: Black and Schole’s Volatility Surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: True Market Volatility Surface 
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Bruno Dupire21 in his 1994 research paper proved that under the conditions of risk-

neutral Brownian motion and no-arbitrage market prices for European vanilla options 

a local (implied) volatility ),( TKLσ can be extracted by applying the Black-Scholes 

PDE to observed market prices. 

Assuming that stock prices follow a risk-neutral random walk of the form: 

,),( SdWtSdtdS σµ +=  

where by ),( tSσσ → becomes a local volatility (i.e. volatility is dependent on the 

strike and time), then an explicit solution of the Black-Scholes PDE for a vanilla 

European call option becomes dependent on the unknown local volatility function: 

)),,(;,;,( rtSTKtSC σ=  

or expressed as a PDE: 







 −

∂
∂

−
∂
∂

=
∂
∂

C
S
C

Sr
S
C

tSS
t
C

2

2
22 ),(

2
1

σ  

 

If one was to inverse the European call function in order to solve forσ , the implied 

volatility calculated would be a function of current stock price S and time t . But what is 

actually required is a local implied volatility as a function of the strike and 

expiration ),( TKLσ . So translating the call option into ),( TK -space results in a call 

function expressed as  

)),,(;,;,( rTKTKtSC σ  

or expressed as a PDE: 







 −
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∂

−
∂
∂

=
∂
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2
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2
1

σ  

Equation 15: Dupire’s PDE Equation 

 

Rearranging this equation results in a local (implied) volatility expression: 

2

2
2

2

2
1

),(

K
C

K

C
K
C

rK
T
C

TK

∂
∂

+
∂
∂

+
∂
∂

=σ  

Equation 16: Local Implied Volatility 

                                                 
21 Dupire, B., 1994, “Pricing with a smile”. Risk Magazine, 7, 18-20 
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Due to the fact that option prices of different strikes and maturities are not always 

available or insufficient, the right local volatility cannot always be calculated22. 

 

2.2.2 Stochastic Volatility   

As shown in figure 2 the market volatility surface is actually skewed. The goal of a 

stochastic volatility model is to incorporate this empirical observation. This is 

implemented into the model by assuming that volatility follows a random (i.e. 

stochastic) process. The model which will be illustrated is the Heston Model23. This 

model is very popular because of two factors. Firstly the Heston Model allows for the 

correlation between asset returns and volatility and secondly it has a semi-analytical 

pricing formula.  

In deriving the stochastic volatility model one assumes the usual geometric Brownian 

Motion SDE where volatility σ is represented as the square root of the variance v . 

 

This gives a stochastic differential equation of the form:  

1ŴdvSSrdtdS +=  

 

where the variance v  is now stochastic and follows its own random process: 

2
ˆ))(( Wdvdtvdv γξςω +Λ−−=  

whereby, ξ is the volatility of volatility and ρ  is the correlation between the two 

Brownian processes 1Ŵd  and 2Ŵd . This relationship implements the mean-reversion 

characteristic of volatility into the model. The real world drift is represented by 

)( vςω −  and Λ symbolizes the market price of volatility. This relates how much of the 

expected return of the option under consideration is explained by the risk (standard 

deviation) ofv . Let vλ=Λ , which makes it proportional to variance and the real world 

drift were to be re-parameterized in the form: 

)()( vkv −=− θςω  

one gets a transformed SDE: 

2
ˆ))(( Wdvdtvvkdv γξλθ +−−=  

Equation 17: Transformed Volatility SDE 

                                                 
22 Derman, E., and Kani,I., Riding on a smile, Risk, 7 (1994), pp. 32--39 

23 Heston, S.L., 1993, “A Closed-Form Solution for Options with Stochastic Volatility with Applications 
to Bond and Currency Options.”, The Review of Financial Studies, Volume 6, Issue 2, 327-343. 



 22 

Where k is the mean-reverting speed and θ  the long term mean. All parameters are 

constants. Forming a portfolio in which volatility risk must be hedged can be done by 

holding a position in a second option. So the portfolio would consist of a volatility 

dependent option V , a long or short position in a second option U as well as the 

underlying S . Therefore the hedged portfolio can be represented as: 

 

USV 21 φφ −−=Π  

 

 

The small change in the value is illustrated as: 

 

dUdSdVd 21 φφ −−=Π  

 

and a small change in the portfolio in dt time is: 

cdtbdvadSd ++=Π  

where: 
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Equation 18: Change in time dt of Portfolio with stochastic volatility 

 

In order to neutralize the risk in the portfolio, the stochastic components ( 0== ba ) of 

risk are set to zero. Therefore rearranging the hedge parameters will give: 

S
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V
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which will eliminate the dS term in equation 18 and  
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to eliminate the dv term in equation 18. The non-arbitrage condition of this portfolio is 

represented by: 

dtrd Π=Π  

 

and substituting Π  in the equation gives: 

 

dtUSVrd )( 21 φφ −−=Π  

 

which simply signifies that the return on a risk-free portfolio must be equal to the risk-

free bank rate r in order to prevent arbitrage possibilities.  

 

Introducing equation 18 into the risk-free, non-arbitrage portfolio and collecting the 

V term on one side and all U on the other side will give an arbitrary pair of derivative 

contracts. This can only occur when the two contracts are equal to some function 

depending only on tvS ,, .  

Therefore let both derivative contracts be represented by ),,( tvSf , whereby f is the 

real world drift term less the market price of risk (see equation 17):  

 

))((),,( vvktvSf λθ −−=  

 

then the PDE from the Heston Model is: 
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This can also be derived from the two dimensional Ito’s lemma equation (equation 

7b). 

The Heston’s model is superior in the theory in comparison to the Black-Schole’s 

Model because its assumption of a variable volatility mirrors that of market and 

empirical observations. But like the Black-Schole’s it falters in some cases due to the 

general assumptions within the model. For instance due to the fact that within the 

Heston’s Model assets prices are assumed to be continuous, large price changes in 

either direction (i.e. jumps) are not allowed in the process assumed by the model. In 

reality price jumps are a natural phenomenon, for example during economic shocks. 
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Another important limitation is that of the interest rate which is assumed to be 

constant. In the real world interest rate do change over time  and maturity. In the 

literature it is widely suggested that the volatility of the underlying is negatively 

correlated with interest rates. If this is true then the implementation of a stochastic 

interest rate and arbitrary correlation between interest rates and volati lity into the 

Heston’s Model could possibly improve its estimations dramatically. 

 

 

2.3 Discrete Time Model: GARCH Model 

The aforementioned models possess the assumption of continuous time. Although 

such models provide the natural framework for an analysis of option pricing, discrete 

time models are ideal for the statistical and descriptive analysis of the distribution of 

volatility. One such class of discrete time models is the autoregressive conditional 

heteroskedastic (ARCH) models which were introduced by Engle 24. An ARCH 

process is a mean zero, serially uncorrelated process with non-constant variance 

conditional to the past, but with a constant unconditional variance. The ARCH models 

have been generalized by Bollerslew25 in the generalized ARCH (GARCH) models. 

The GARCH (1,1) models seem to be adequate for modeling financial time series26. 

As result the GARCH (1,1) will be the only discrete time model which will be 

introduced in this section. 

GARCH stands for Generalized Autoregressive Conditional Heteroskedasticity. 

Heteroskedasticity can be considered as the time varying characteristic of volatility 

(square root of variance). Conditional means a dependence on the observations of 

the immediate past and autoregressive describes a feedback mechanism that 

incorporates past observations into the present.  

Therefore one can conclude that GARCH is a model that includes past volatilities 

(square root of variance) into the estimation of future volatilities. It is a model that 

enables us to model serial dependence of volatility. GARCH modeling builds on 

advances in estimating volatility. It takes into account excess kurtosis (fat-tailed 

                                                 
24 Engle, R.F., 1982, “Autoregressive conditional heteroskedasticity with estimates of the variance of 
United Kingdom inflation”, Econometrica. 
25 Bollerslew, T., 1986, Generalized Autoregressive Conditional Heteroskedasticity”, Journal of 
Econometrics, Vol. 3, 307-327.  
26 Duan, J.C., 1990, “The GARCH Option pricing Model, unpublished manuscript, McGill University. 
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distribution) and volatility clustering, two important characteristic of real market 

volatility observations. 

Financial data has shown that the variance seems to be varying from time to time 

and usually a large movement in both directions seems to be followed by another. 

This is termed volatility clustering. Unlike the assumed normal distribution of log 

returns in asset prices, empirical data of such returns have depicted fat-tailed 

distributions. Tail thickness can be measured in kurtosis (the fourth moment) with the 

kurtosis of normal distribution being at a value of 3.  

However market data have possessed thicker tails, i.e. a kurtosis greater that 3. The 

GARCH27 models have been constructed to capture these features. 

Let a series of assets returns tr which are conditionally modeled be represented as: 

tttt Ir εµ +=−1  

1−tI  denotes the information available in 1−t time and the conditional mean 

tµ contains a constant, some dummy variables to capture calendar and possibly 

autoregressive or moving average term. The stochastic change tε  is expressed for a 

GARCH class of models in terms of a normal distributed variable as: 

),0(~ 2
1 ttt NI σε −  

where 2
tσ is the time-varying variance. Different constellations of 2

tσ  as a 

deterministic function of past observations and past conditional variances give rise to 

several kinds of GARCH-type models. Considering the conditional variance 2
tσ  as a 

linear function both of p past squared innovations and q lagged conditional 

variances, one derives the standard GARCH ),( qp model introduced by Bollerslev 

(1986). 
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Equation 19: Conditional Variance of a standard GARCH ),( qp  

 

where L denotes the lag operator. Imposing the restriction 0=jβ for any j , gives the 

original ARCH )( p model from Engle (1982). The ARCH )1( model is a special case of 

the GARCH )1,1( with 0=jβ . Autoregressive Conditional Heteroskedasticity was first 

                                                 
27 Bollerslev, T., 1986: “Generalized Autoregressive Conditional Heteroskedasticity, 
Journal of Econometrics”, 31, 307–327. 
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introduced by Robert Engle 28 in 1982 who later went on to become a Nobel Prize 

Laureate in 2003.  

 

 

2.4 Forecasting Abilities of Volatility Estimators 

It has been mentioned above that financial market volatility has been known to show 

fat tails distribution, volatility clustering, asymmetry and mean reversion. Some 

researches have shown that volatility measures of daily and intra-day returns 

possess long data memory29. These results are relevant because they infer that a 

shock in the volatility process of the likes of jumps have long lasting implications on 

estimations. 

The mean reversion of volatility creates some problems by the selection of the 

forecast horizon. In their paper Andersen, Bollerslev and Lange30 (1999) empirically 

showed that volatility forecast accuracy actual improves as data sampling frequency 

increases relative to forecast horizon. Furthermore Figlewski31 (1997) found out that 

forecast error doub led when daily data, instead of monthly is used to forecast 

volatility over two years. In some cases where very long horizon are used, e.g. over 

15 years, it was better to calculate the volatility estimates using weekly or monthly 

data, due to the fact tha t volatility mean reversion is difficult to adjust using high 

frequency data. In general, model based forecasts lose on quality when the forecast 

horizon increases with respect to the data frequency.  

In their paper Poon and Granger32 (2002) reviewed the results of 93 studies on the 

topic of volatility forecasting. They came to the conclusion that implied volatility 

estimators performed better than historical and GARCH estimators, with historical 

and GARCH estimators performing roughly the same. They went on further to say 

that the success of the implied volatility estimators does not come as a surprise as 

these forecasts use a larger and more relevant information set than the alternative 

methods as they use option prices, but also reiterated that implied volatility 

                                                 
28 Engle, R. 1982, “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of 
U.K. Inflation, Econometrica 52, 289-311. 
29 Granger, C.W.R., Z. Ding and S. Spear, 2000, “Stylized facts on the temporal and distributional 
properties of absolute returns, Working paper, University of California, San Diego 
30 Andersen, T., T. Bollerslev and S. Lange, 1999, “Forecasting financial market volatility: Sample 
frequency vis-à-vis forecast horizon”, Journal of Empirical Finance, 6, 5, 457-477. 
31 Figlewski, S., 1997, “Forecasting volatility”, Financial Markets, Institutions and Instruments, New 
York University Salomon Center, 6, 1, 1-88. 
32 Poon, S.H. and C. Granger, 2002, “Forecasting Volatility in Financial Markets: A Review” 
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estimators are less practical, not being available for all asset classes. They 

concluded that financial volatility can clearly be forecasted. The main issues are how 

far into the future can one accurately forecast volatility and to what extent, can 

volatility changes be predicted. The option implied volatility, being a market based 

volatility forecast has been shown to contain most information about future volatility. 

Historical volatility estimators performed differently among different asset classes but 

in general, they performed equally well as GARCH models. 

 

3. Volatility Trading and the New Volatility Indices of the Deutsche 

Boerse 

 

3.1 Volatility Trading 

Over the recent decades volatility has gained in popularity as a tradable instrument in 

financial markets, especially in the “over the counter” markets (OTC). This growth in 

interest is mainly due to several of its basic characteristics. Firstly volatility tends to 

grow in periods of uncertainty and therefore acts as a gauge for uncertainty which 

reflects the general sentiments of the market. Secondly its negative correlation to its 

underlying and its statistical property of mean reversion equip volatility with 

characteristics which are quite valuable to financial market participants. Lastly implied 

volatility tends to be higher than realized volatility thus creating opportunities for 

speculative trading. This reflects the general aversion of investors to be short on 

option volatility. Therefore a risk premium is paid to the investor to remunerate him for 

going short on implied volatility.  

Volatility is one of the most important financial risk measures that need to be 

monitored (because of its use as an information tool for researchers, warrants issuer 

and users) and hedged, due to the main fact, that all market participants are 

somehow influenced directly or indirectly by volatility levels and its movements.  

Over the years various strategies have been developed by financial practitioners to 

capture volatility. One such strategy is the use of straddles. This is the most common 

option strategy designed to capture the volatility of an underlying. In recent times an 

OTC market for trading with volatility and variance swaps has picked up. This has 

made it possible to trade in pure volatility.   
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One can recognize three generic types of volatility traders on the market, namely the 

directional traders, spread traders and volatility hedgers. Directional traders 

speculate on the future levels of volatility, while spread traders guess on either the 

spread between implied and realized volatilities or the spread between the volatility 

levels of say two indices. On the other hand volatility hedgers like hedge funds 

managers will want to cover their short volatility positions.  

There are several ways to be short on volatility. A passive index tracker is implicitly 

short volatility since his rebalancing costs increase with increasing volatility. 

Benchmarked portfolio managers have an increasing tracking error with increasing 

market volatility which makes their portfolio implicitly short volatility. Lastly equity fund 

managers are implicitly short volatility due to the existence of a negatively correlated 

relationship between volatility and underlying returns. 

 

3.1.1 Straddles 
A straddle strategy entails the purchasing of both the call and put options on the 

same strike. This means that the purchaser is not speculating on a directional 

movement but simply on a movement regardless in whatever direction, hence this 

strategy relies on the volatility of the underlying to make money.  

 

 
Figure 3: Straddle 
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Lets assume that the September future on the Bund (i.e. the future on German 10-

year bonds) is trading at 114.00 on the last trading day. The 114.00 straddle is 

trading at 44 ticks. If the market remains at 114.00 for the whole day, the option 

owner has paid 44 ticks for a straddle that is worth 0 on expiry; as the market expires 

at 114.00, neither the calls nor the puts are in-the-money an as such, the option 

holder will lose all his premium. Looking at figure 3 above, the distance between A 

and B is the premium paid to purchase the straddle. At this point, the straddle is 

exactly at-the-money. If the market moves up, the 114.00 calls will be in-the-money 

and the option holder will start to earn back some of the 44 ticks he paid for the 

straddle. If the market moves down, the puts will be in-the-money and, once again, 

some of the 44 ticks paid out will be earned back. Therefore the option holder is 

speculating purely on volatility. At point C (113.56) and point D (114.44), the puts or 

calls respectively have made enough to cover the cost of the straddle. These 

breakeven points are 44 ticks away from the strike (114.00). 

 

3.1.2 Swap Trading: Volatility and Variance 

Through the use of volatility and variance swaps, traders are synthetically exposed to 

pure volatility. In reality volatility and variance swaps resemble more closely a forward 

contract than a swap whose payoff are based on the realized volatility of the 

underlying equity index like the EuroStoxx 50. Unlike such option-based strategies 

like that of the straddle or hedged puts or calls, these swaps have no exposure to the 

price movements of the underlying asset. A major negative aspect of using option-

based strategies is that once the underlying moves, a delta -neutral trade becomes 

inefficient. Re-hedging becomes inevitable in order to maintain a delta-neutral 

position by market fluctuations. The resulting transaction and operation costs of re-

hedging general prohibit a continual hedging process.  Therefore a residual exposure 

of the underlying asset ultimately occurs from option-based volatility strategies. 

Although volatility and variance swaps serve the same purpose, they are not exactly 

identical. There are some important aspects of both which make them unique. One 

such aspect is that of their payoff functions. While volatility swaps exhibit a linear 

payoff function with respect to volatility, variance swaps on the hand have non-linear 

(curvilinear) payoff functions. Furthermore volatility swaps are much more difficult to 

price and risk-managed. 
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As mentioned above volatility swaps are forward contracts on realized historical 

volatility of the underlying equity index (e.g. EuroStoxx 50). The buyer of such a 

contract receives a payout from the counterparty selling the swap in case the volatility 

of the underlying realized over the swap contract’s life exceeds the implied volatility 

swap rate quoted at the interception of the contract. The payoff at expiration is based 

on a notional amount times the difference between the realized volatility and implied 

volatility: 

)(€ impliedrealizednotionalPayoff σσ −×=  

 

All volatilities are annualized and quoted in percentage points. The notional amount is 

typically quoted in Euros per volatility percentage point. Take for instance a volatility 

swap with a notional amount of € 100,000 per volatility percentage point and a 

delivery price of 20 percent. If at maturity the annualized realized volatility over the 

lifetime of the contract settled at 21.5 percent then the owner would received: 

 

000,150€)205.21(000,100€ =−×=Payoff  

 

The implied volatility is the fixed swap rate and is established by the writer of the 

swap at the time of contractual agreement.  

The general structure and mechanics of a variance swap are similar to that of a 

volatility swap. The main dissimilarity between the two volatility derivatives is that 

realized and implied variances (volatility-squared) are used to calculate the pay-off 

and not realized and implied volatilities. 

 

)(€ 22
impliedrealizednotionalPayoff σσ −×=  

 

As mentioned above, the use of variance instead of volatility results in a nonlinear 

payoff. This means loss and gains are asymmetric. Therefore, there is a larger payoff 

to the swap owner when realized variance exceeds implied variance, compared to 

the losses incurred when implied variance exceeds realized variance by the same 

volatility point magnitude. The swap rate is essentially the variance implied by a 

replicating portfolio of puts and calls on the index. The synthetic portfolio is so 

constructed that its value is irresponsive of stock price moves. This combination of 
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calls and puts is a weighted combination across all strikes (i.e. from zero                                 

to infinity), with the weights consisting of the inverse of the square of the strike level.  

Prices of less liquid or non-traded options are estimated via interpolation and 

extrapolation. All the options within the portfolio possess the same expiration date as 

the variance swap contract. Therefore, the variance implied from the market value of 

this portfolio becomes the swap rate of the volatility derivative. At expiration, if the 

index’s realized variance is below the swap rate, then the swap holder makes a 

payment to the swap writer. The opposite payment flow occurs, if the swap rate is 

higher than the realized variance at expiration. 

There are some trading strategies which can be applied to volatility or variance 

swaps. It has been empirically shown that implied volatility is often higher that the 

volatility realized over the lifetime of the option33.  Given the structure of these 

derivatives, going short on variance swaps can be used to capture the difference 

between historical and implied volatility. Therefore a trader can sell a variance swap 

and earn profits as the contract expires. Another strategy is to use variance swaps to 

execute stock index spread trading. Such a strategy can be implemented using a 

short variance swap on an equity index (EuroStoxx 50) which is then partially hedged 

by a long swap on another index (S&P 500). This spread has a payoff based on the 

difference between the realized volatility (or variance) of the two indices.  

At inception, the swap contract will have a zero market value, but throughout the life 

of the contract the market value of the swap is primarily influenced by changes in the 

volatility surface for options of similar maturities based on the remaining                               

life of the variance swap. 

 

3.2 The Methodologies of the Volatility Indices 

Implied volatility at the Deutsche Börsewill be calculated in future using two different 

types of methodologies. An old concept, which will continue to be used to calculate 

the volatility of the DAX® (old VDAX) and the new model which will be introduced to 

calculate the volatility of the  new VDAX, the VSTOXX (volatility of the EuroStoxx 

50®) and the VSMI (volatility of the SMI®). 

 

                                                 
33 Fleming J., 1998, “The Quality of  Markets Forecasts Implied by S&P100 Option Prices”, Journal of 
Empirical Finance, 5, 317-345 



 32 

3.2.1 The Old Methodology  

Computing volatility using the old model requires three components. Firstly, an option 

model, secondly the values of the model’s parameters, except that of volatility and 

lastly, an observed price of the option on the index. The option model used here in 

the calculation is based on the Black-Scholes Option Pricing Model34 applied to a 

European call option. There is a slight modification to the original model which relates 

to the underlying’s valuation. The Forward index level is used instead of the 

underlying’s present index level. This can be expressed as: 
rtSeF =  

Substituting the forward index level )(F  for the index level )(S in the equation (14) 

results in the following expressions below: 

)),()(( 21
)( dKNdFNeC tTr −= −−  [1] 

)),()(( 12
)( dFNdKNeP tTr −−−= −−  [2] 

where,  
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 ,12 tTdd −−= σ  [5] 

Equation 20: Explicit Solution of Black-Scholes using the Forward Index Level 

 

whereby: 

C , Call price 

P , Put price 

F , Forward price of the index level 

tT − , Time to expiration 

r , Risk-free interest rate 

σ , volatility of the option 

(...)N , Normal distribution function 

 

 

 

                                                 
34 See section 2.2.1. 
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The refinancing factor R is expressed as: 
)( tTreR −=  [6] 

When expressions [1] and [2] are re-parameterized to make them dimensionless, 

results in the following transformations:  

2
tT

v
−

=
σ

 [7], generalized volatility 

FK
CR

c = , [8], generalized call price  

FK
PR

p = , [9], generalized put price 

FK
F

f = , [10], generalized forward price 

)ln( fu = , [11], logarithmic of generalized forward index level  

Therefore the resulting generalized call and put prices can be represented as:  
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u

Nev
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u

Nec uu −−+= −+ , [12] 

)()( v
v
u

Nev
v
u

Nep uu −−−+−= +− , [13] 

Equation 21: Generalized Call and Put Formulae 

These transformations create expressions of the call and put prices, which are 

expressed as functions of the forward index level )(u and volatility )(v . These option 

price representations are the basis for the calculation of the volatility using the old 

methodology. The old methodology measures implied volatility using the at-the-

money (ATM) option of the index. The implied volatility is numerically extracted from 

the ATM option price using the transformed Black-Scholes Option Pricing Model 

expressed above 35. A draw back to this methodology is that it’s computationally 

intensive. 

The calculation of volatility using the old Methodology occurs in one minute intervals, 

whereby the respective best bid and best ask of all index options and future contracts 

listed on Deutsche Börseare extracted from the stream of data generated by the 

Eurex system. The option prices extracted are subject to a filtering process in which 

all one sided market option (i.e. either possessing only a bid or ask) are filtered out. 

Option with neither a bid nor ask are also automatically filtered out. Another filter 

verifies whether the bid/ask spread of each remaining option satisfy the criteria of 
                                                 
35 see expressions [12] and [13]. 
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staying within the maximum quotation spreads established for Eurex market-makers. 

Accordingly the maximum spread must not exceed 15% of the bid quote, with in the 

range of 2 basis points to 20 basis points36. 

The next step in this process is to calculate the mid-price for the filtered options and 

futures prices. Therefore for each maturity i and exercise j , the mid-prices of the bid 

b and ask a are calculated as follows: 
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The corresponding interest rate which matches the time to expiration of the index 

option is derived through the use of linear interpolation. The two nearest interest 

rates )( KTr  and )( 1+KTr (e.g. 1 week and 1 month Euribor rates) to the time to 

expiration iT  of the option under consideration and their respective time to expirations 

KT  and 1+kT , are interpolated to derive an approximation of the interest rate to be 

used in the calculation of the index. This is shown below: 
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Equation 22: Interpolation of interest rates  

where, 

1+<≤ kik TTT , [18] 

The information gained is then used in the calculation of the refinancing factor 

iR using the relation in expression [6]. 

The determination of the forward price can occur in two distinctive steps. The first 

step entails calculating the preliminary forward prices of the index using the options’ 

remaining time to expiration. If a future on the index under consideration has a 

matching time to expiration with the option on the index and is also quoted within the 

given maturity period of the option, then the mid-price of the future is used as the final 

forward price. The complexity of the determination of the forward price of the index 

price increases in cases where there are no index futures present in which the time to 

                                                 
36 refers to old market making model which is no longer in use 
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expiration matches. In these cases, no forward price is then available in the Eurex 

system for the given index options expiry month. In such a case, a forward price is 

calculated in two steps. Firstly a preliminary forward price 'F is estimated by way of 

linear interpolation, using those futures that have not been filtered out and are quoted 

around the time to expiration under consideration. If interpolation is not available due 

to the fact that no future with a longer remaining time to expiration is quoted and 

available, then extrapolation based on the longest available futures contract is used 

to calculate the preliminary forward price. The preliminary forward price calculated 

that way defines the preliminary at-the-money point. Only those option series j within 

a given expiry month, whose exercise prices are close to the preliminary forward 

price are taken into account in the next step of the calculation process. 

For expiry months, where a preliminary forward prices was calculated by means of 

interpolation or extrapolation, the final forward price is now determined from the 

option prices, using the put-call parity method. For this purpose, pairs of calls and 

puts with the same exercise price are created.  

Around the preliminary at-the-money point, a range of sixteen options is determined, 

i.e. the pairs of puts and calls of each of the four nearest exercise prices above and 

below this point. If no two pairs are simultaneously quoted within this range, the final 

forward price and therefore a current sub-index value cannot be determined. In such 

a case, if there is already an existing sub-index, this existing sub-index will continue 

to be used. If there are two or more pairs, every valid pair will be used in the 

calculation process. The reason for restricting to only eight exercise prices is to elude 

any series from the forward price calculation (using the call-put parity) which are 

either quoted not frequently enough or possess too wide a spread between bids and 

asks.  

The calculation of the final forward price is expressed below: 

  [ ]∑ +−=
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jiijiji KRPC
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F
,
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, [19]  

The expression above illustrates that the refinancing factor iR and the forward price 

iF have been established for every expiry month. The generalized, empirical option 

prices are calculated from the adjusted call and put prices according to the relations 

denoted in expression [8] and [9] above, using the exercise prices jK . 

As soon as the final forward price for a given time to  expiration is determined, implied 

volatilities are calculated for all individual options which are relevant to this time to 
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expiration and have not been filtered out. Since the generalized and adjusted option 

pricing formula, derived from the Black-Scholes Option Pricing Model cannot be 

directly solved for volatility, an iteration method is used to estimate the required 

value.  

The starting value for the generalized volatility v  [7] is set at 0.015. The theoretical 

generalized option price calculated using this value is compared to the market price 

of the option. Applying the Gauss-Newton method, a new generalized volatility iv is 

gradually determined and used as the starting value for each successive iterative 

step. Upon attaining a given degree of accuracy (i.e. when iv and 1+iv only differ from 

each other by 0.000003), the iteration process is stopped, yielding the option’s 

generalized implied volatility.This is the value where the theoretical option price, 

calculated on the basis of that value, is almost identical to the market price of the 

option. 

Before the calculation of a sub-index iV  can be carried out, the range of four (4 pairs 

calls and puts) option for the estimation process must be determined, this time, 

around the final forward price (calculated using the call-put parity), or the index 

futures price. Implied volatilities of each of the four options are weighted according to 

the distance of their exercise prices from the forward or futures price. Those four 

options selected have to be paired with the same exercise price, two higher and two 

lower than the calculated final forward price. Furthermore, how actual the options are, 

is given priority over the distance from the forward price. Accordingly, if there are 

current volatilities derived from the pair of options higher than the forward price, then 

the strike closer to the at-the-money point will be used. However, if the volatility of the 

more distant of the two higher options represents the more current information, then 

this strike (consisting of a call and a put) will be chosen. 

For the interest rates determination, calculation is based on the values of the 

respective previous trading day until these interest rates are updated. With the index 

futures and options, this is different. In order to avoid volatility fluctuations, which are 

caused by changes in the index level from one day to the other, no previous day’s 

values are used. 

The dissemination of a sub-index requires the availability of certain data: firstly, it 

requires a forward price for the equity index with the same time to expiration as the 

sub-index; this value results directly from the index futures prices, or it is calculated. 

Around this forward price, defining the at-the-money point, the four individual 



 37 

volatilities used to calculate the index must be available. For this purpose, these 

volatilities do not need to have been traded simultaneously. As soon as the forward 

price as well as best bid and best ask prices, which have not been filtered out, are 

available for an option, its volatility can be determined. If the current data situation 

does not allow for a recalculation of this option’s volatility in the subsequent 

calculation process, the last calculated value will continue to be used. 
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whereby: 

iV   = Sub-index i , i.e. generalized volatility of time to expiration i  

iF   = Forward or futures price of the corresponding time to expiration i  

v   = Implied volatility of an individual option  

K   = Strike price of the option 

Subscripts h  and l  indicate whether reference is made to the higher or lower 

neighbouring exercise price. 

If the final forward price’s relevant strike price alters from one calculation to the next, 

and if the volatilities actually required for the calculation of the sub-index are not yet 

available for this new strike, the index is recalculated all the same – provided that 

both volatilities are available for at least one pair of the new neighbouring strike 

prices. In this case, only one volatility value is present for a given strike; this volatility 

is also used to estimate the missing fourth. If there are no such volatilities at all, the 

sub-index is determined as the average of the two existing volatilities. Again, how 

actual the data is, takes precedence over closeness to the forward price. 

These sub-indices typically have no fixed remaining time to expiration, and will 

eventually expire. The objective behind the main volatility index is to construct a 

volatility index with a rolling, fixed time to expiration. This is attained through the 

interpolation of the nearest two sub-indices to the fixed remaining time to expiration. 

The related sub-indices iV  and 1+iV  have been determined on the assumption that 

volatility is constant and the Black-Scholes Model is applicable. However, if volatilities 

iσ and 1+iσ  are not identical, and if, for example, 1+iσ  is greater than iσ , then market 

participants are obviously assuming higher average price fluctuations in the index for 

the far short term than for the near short term. Of course, in such a case, the 

statistical distribution of the equity index price fluctuations is no longer Gauss-shaped 
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and, therefore resulting that the Black-Scholes Model is no longer appropriate to 

reflect this issue. However, the construction of the volatility index using this old 

methodology aims at adhering to the Black-Scholes Model all the same.  

Based on the various assumptions stated above, volatility V  over the fixed remaining 

time to expiration T  is equal to the following: 
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Equation 23: Linear Interpolation of variance 

whereby: 1+<< ii TTT  

The equation above illustrates a linear interpolation of variances. By annualizing the 

interpolated volatility V  one derives the main volatility index under the old 

methodology: 

TV2=σ  

Equation 24: Volatility index using old methodology 

 

3.2.1 The New Methodology 

The new methodology used by the Deutsche Börse to calculate implied volatility 

utilizes the implied volatility derived from an at-the-money option and traded out-of-

the money options of calls and puts per maturity series. This aims at making pure 

volatility tradable – i.e. the index should be able to be tracked by a portfolio which 

does not react to price fluctuations, but only to changes in volatility.  But this is not 

directly achieved through volatility, but rather through variance or volatility squared. 

So, instead of only using implied volatilities around the at-the-money point, as with 

the “old” methodology, the new methodology also considers implied volatilities of out-

of-the-money options of a given time to expiration. 

In contrast to the old methodology, which is computationally intensive, the new model 

does not extract the implied volatility from an option pricing model like the Black-

Scholes Option Pricing Model. The new methodology only involves summations over 

option prices and is thus computationally less demanding.  The volatility index 

derived, measures the square root of the implied variance using index option prices 

of the equity index under consideration traded at Eurex. 
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Beside the continuous calculation of the main index with a rolling fixed maturity of 30 

days, there are eight sub-indices measuring the volatility of the first eight option 

expiries having (1, 2, 3, 6, 9, 12, 18 and 24 months) to go at inception. The main 

index is determined by interpolation of two sub-indices which are nearest to a fixed 

remaining lifetime of 30 days. Therefore the calculation process of the new 

methodology can be divided into three main steps, mainly the data preparation and 

extraction, the calculation of the sub indices and finally the calculation of the main 

indices. 

Before the data processing begins, the data are collected via snapshots every 

minute.  

This includes: 

• the best bid, ask, last prices as well as the settlement prices of all the equity 

index options.  

• EONIA – the Euro-Overnight-Index-Average as overnight interest rate 

• EURIBOR - the European Interbank Offered Rates as money-market interest 

rate for 1, 2, ... 12 months (calculated once a day, 11.00 a.m. CET, by the 

European Banking Federation) 

• REX - the yield of the sub index with a maturity of 2 years (calculated on the 

basis of exchange-traded prices) as longer-term interest rate.  

EONIA, EURIBOR and the yield of the REX are all risk-free interest rates. 

 
Index Name Period Code ISIN 

EONIA 1 day EU1D EU0009659945 

EURIBOR 1 month 1 month EU1M EU0009659937 

EURIBOR 2 months 2 months EU2M EU0009652841 

EURIBOR 3 months 3 months EU3M EU0009652783 

EURIBOR 4 months 4 months EU4M EU0009652858 

EURIBOR 5 months 5 months EU5M EU0009652866 

EURIBOR 6 months 6 months EU6M EU0009652791 

EURIBOR 7 months 7 months EU7M EU0009652874 

EURIBOR 8 months 8 months EU8M EU0009652882 

EURIBOR 9 months 9 months EU9M EU0009652890 

EURIBOR 10 months 10 months EU10 EU0009652908 

EURIBOR 11 months 11 months EU11 EU0009652916 

EURIBOR 12 months 12 months EU12 EU0009652809 

REX 2-YEAR (PRICE INDEX) 2 years REX2 DE0008469149 

 
Figure 4: Table of interest rates  
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The option prices are subject to a data filtering process. For this purpose, options 

with a one-sided market, i.e. with a bid or an ask price only, and options with neither 

a bid nor an ask price, are disregarded. Another filter verifies the prices of the 

remaining quotes, checking if the bid/ask spread is within the maximum spreads for 

market makers at Eurex. The maximum spread restricts the quote to be within 15% of 

the bid quote, subject to a minimum of 2 points and a maximum of 20 points37 for 

index expiry dates up to two years.   

Example: 

Bid = 45.32 and Ask = 54.3 

Max. Spread: 45.32 * 0.15 = 6.798. Therefore, bid and ask illustrated above are 

discarded. 

If the Eurex® activates the option „Fast Market“ in times of very hectic trading, Market 

Makers are allowed to double their maximum spreads. In that case the maximum 

spreads listed above are doubled for the equity index. 

Yet a third filter checks if bid, ask, settlement and last prices have a minimum value 

of 0.5 Index points. This is the specified cut off point for the not yet filtered out 

options, which are too far out-of-the-money and are therefore not considered for the 

estimation of the index. For the calculation the most actual of the following price 

types of the option is selected: 

• settlement price 

• mid-price 

• trade price 

Example: 

Settlement prices are from previous trading day 

 
STRIKE SETTLE BID_ 

TIME 

BID ASK_ 

TIME 

ASK MID_ 

TIME 

MID TRADE_ 

TIME 

TRADE price for 

calculation 

825 76.7  --  --  --  -- 76.7 

850 53.71  --  --  -- 09:05 54.01 54.01 

875 37.51 09:04 33.7 09:05 34.4 09:05 34.05   34.05 

900 22.54 09:03 17.29 09:05 19.53 09:05 18.41 09:01 20.21 18.41 

 

 

 

                                                 
37 refers to old market making model at Deutsche Börse 
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The sub-indices are calculated according to the following formula: 

 

2100 ii sVSTOXX ⋅=  

Equation 25: Volatility index using new method 
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Equation 26: Implied variance 

and:   

iT  Time to expiration of the thi  index option  

iF  Forward index level derived from thi  index option prices for which the 

absolute difference between call and put prices is smallest. Therefore 

this relation can be expressed as: 

 
iiPCMinDiffi PutPrice-CallPrice min*ReStrikePricF += −  

 (Note: If no unique minimum exists then the average of the forward 

index levels under consideration is taken as Forward index level) 

jiK ,  Strike price of the thj  out-of-the-money option of the thi  equity index 

option in ascending order; a call if iji FK >,  and a put if iji FK <, ; 

jKK jiji ∀< +1,,  

jiK ,∆   Interval between strike prices – half the distance between the strikes on 

  either side of jiK ,  

  
2

1,11,
,

−+ −
=∆ jji

ji

KK
K  

( jiK ,∆  is the difference between the lowest strike and the next higher 

strike for the lowest selected strike and the difference between the 

highest strike and the next lower strike for the highest selected strike.)  

(Note: Ignore a strike if a price is not available) 

biK ,   First strike below the forward index level iF ; b  = # strikes iF≤  

iR   Refinancing Factor of the thi index option 

( iiTr
i eR = ; ir as the risk-free interest rate to expiration of the thi index 

 option) 
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( )jiKM ,  The price for each option with strike biji KK ,, ≠    

( )biKM ,  The put/call average with strike biK ,  

 

The sub-indices are calculated up to 2 days remaining to settlement day of 

expirations. Each new sub-index is disseminated for the first time on the second 

trading day of the relevant index option. 

The time to expiration is given by: 

( ) yeardaysotherdaysettlementdaycurrenti TTTTT
i

/++=  

daycurrentT  = time remaining until midnight of the current day 

idaysettlementT  = time from midnight until 8:30a.m. (configurable calculation time) on 

  settlement day i 

daysotherT   = time between current day and settlement day 

yearT   = time in current year 

 

To calculate the time to expiration T  for all sub-index expirations (under 

consideration of day light saving times) one uses seconds as the unit: 

( ) yeardaysotherdaysettlementdaycurrenti NNNNT
i

/++=  

daycurrentN      = seconds remaining until midnight of the current day 

idaysettlementN  = seconds from midnight until configured calculation time on settlement 

  day i  

daysotherN  = seconds between current day and settlement day 

yearN           = seconds in fixed calendar year of 365 days 

Example: a one month expiry (1M): 

Trading day: 2004/04/29, tick time: 10:54:00, settlement time 08:30  

 

daycurrentN  = ((24-10) * 60 – 54) * 60 = 47,160 

idaysettlementN  = (8 * 60 + 30) * 60 = 30,600 

daysotherN  = 60 * 60 * 24 * 21 = 1,814,400 

alldaysN      = daycurrentN + 
idaysettlementN + daysotherN   = 1,892,160 
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yearN   = 365 * 24 * 60 *60 = 31,536,000 

iT   = alldaysN s / yearN  = 0.06 

 

Qualifier 1M 2M 3M 1Q 2Q 3Q 1H 2H 

Expiration 2004/05 2004/06 2004/07 2004/09 2004/12 2005/03 2005/06 2005/12 

Settlement 

Date 21.05.2004 18.06.2004 16.07.2004 17.09.2004 17.12.2004 18.03.2005 17.06.2005 16.12.2005 

other days 21 49 77 140 231 322 413 595 

Nother days 1814400 4233600 6652800 12096000 19958400 27820800 35683200 51408000 

Nalldays 1892160 4311360 6730560 12173760 20036160 27898560 35760960 51485760 

Tl 0.06 0.13671 0.21342 0.38602 0.63534 0.88465 1.133972 1.63260 

 

A linear interpolation is used to determine interest rates with maturities matching 

those of the index option. 
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where 1kik TTT +<≤  

For all interest rates the time to expiration in seconds has to be calculated and the 

actual rate has to be gathered. 

 

 EONIA 1M Euribor 2M Euribor 3M Euribor 4M Euribor 5M Euribor 6M Euribor 7M Euribor 

days 1 30 60 90 120 150 180 210 

Ndays 86400 2592000 5184000 7776000 10368000 12960000 15552000 18144000 

Tl 0.00273 0.08219 0.16438 0.24657 0.32876 0.41095 0.49315 0.57534 

rate 2.04 2.056 2.063 2.073 2.082 2.093 2.106 2.123 

 

 8M Euribor 9M Euribor 10M Euribor 11M Euribor 12M Euribor REX 1Y REX 2Y 

days 240 270 300 330 360 360 720 

Ndays 20736000 23328000 25920000 28512000 31104000 31104000 62208000 

Tl 0.65753 0.73972 0.82191 0.90410 0.98630 0.98630 1.97260 

rate 2.144 2.165 2.188 2.213 2.239 2.172 2.5344 

 

The interpolation leads to the following interest rates: 

 

Qualifier 1M 2M 3M 1Q 2Q 3Q 1H 2H 

Nall days 1892160 4311360 6730560 12173760 20036160 27898560 35760960 51485760 

ri 2.05153 2.06064 2.06896 2.08827 2.12303 2.16792 2.23854 2.39313 
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The following refinancing factors for the 8 maturities are then calculated: 

iiTr
i eR = . 

 

Qualifier 1M 2M 3M 1Q 2Q 3Q 1H 2H 

Tl 0.06 0.136712329 0.2134247 0.3860274 0.6353425 0.8846575 1.133972603 1.6326027 

ri 2.05153 2.06064 2.06896 2.08827 2.12303 2.16792 2.23854 2.39313 

Ri 1.13098 1.32540 1.55514 2.24042 3.89063 7.04637 12.48486 51.09627 

 

For 1M (1 month expiries) options the absolute smallest difference, forward price 

iF and strike price 0,iK  are determined using the not filtered out “out-of-the-money” 

calls and puts: 

min PutPrice-CallPrice = 0.43 

Strike Price = 900 

 

 

1M options 

Strike Price K Call Put Absolute Difference 

775 125.48 0.11 125.37

800 100.79 0.41 100.38

825 76.7 1.3 75.4

850 54.01 3.6 50.41

875 34.05 8.64 25.41

900 18.41 17.98 0.43

925 8.07 32.63 24.56

950 2.68 52.23 49.55

975 0.62 75.16 74.54

1000 0.09 99.61 99.52

1025 0.01 124.52 124.51
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The out-of-the-money option prices are cut off if they are priced less than Z (which 

can be parameterized). Z could be for example 0.5 option points.  

 

(1) The forward index level iF  for all options is calculated as follows: 

iiPCMinDiffi PutPrice-CallPrice min*ReStrikePricF += −  

e.g. 

MR1 = 1.130988311 % 

MF1 = 900.490 

(2) 0K is the strike price immediately below the forward index levels iF . 

MF1 = 900.490 

0K  = 900 

 

If the absolute call-put differences of two or more options with different strike 

prices are identical, for each of these strike prices, a forward index level has to be 

calculated. 

 

1M options 

Strike Price K Call Put Absolute Difference 

900 30.41 17.98 12.43

925 44.20 32.63 12.43

 

MF1  (900) = 914.06 

MF1  (925) = 939.06 

 

The average of these forwards is used to determine 0K . 

 

Average ( MF1  (900) + MF1  (925)) = 926.56 

0K  = 925 

 

jiM ,  Price of the selected thj  out-of-the-money option of the thi  index option 

in ascending order;  

a call if iji FK >,  and a put if iji FK <, ; jKK jiji ∀< +1,,  
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Example: 

 
1M options 

Strike Price Call Put Mi.j 

775 125.48 0.11 = Put 0.11 

800 100.79 0.41 = Put 0.41 

825 76.7 1.3 = Put 1.3 

850 54.01 3.6 = Put 3.6 

875 34.05 8.64 = Put 8.64 

900 18.41 17.98 =(Call+Put)/2 18.195 

925 8.07 32.63 = Call 8.07 

950 2.68 52.23 = Call 2.68 

975 0.62 75.16 = Call 0.62 

1000 0.09 99.61 = Call 0.09 

1025 0.01 124.52 = Call 0.01 

 

 The jiK ,∆  per strike is calculated a follows 

 

for all options except those with the lowest and highest strike price as: 

jiK ,∆ = 
2

11 −+ − ii KK
 

for the lowest strike of the selection: 

jiK ,∆  = ii KK −+1  

for the highest strike of the selection: 

jiK ,∆  = 1−− ii KK  
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1M options 

Strike Price K(i) Delta K ij  Call Put Mi.j 

775 =K(i+1) - K(i) 25 125.48 0.11 0.11 

800 =(K(i-1) - K(i+1))/2 25 100.79 0.41 0.41 

825 =(K(i-1) - K(i+1))/2 25 76.7 1.3 1.3 

850 =(K(i-1) - K(i+1))/2 25 54.01 3.6 3.6 

875 =(K(i-1) - K(i+1))/2 25 34.05 8.64 8.64 

900 =(K(i-1) - K(i+1))/2 25 18.41 17.98 18.195 

925 =(K(i-1) - K(i+1))/2 25 8.07 32.63 8.07 

950 =(K(i-1) - K(i+1))/2 25 2.68 52.23 2.68 

975 =(K(i-1) - K(i+1))/2 25 0.62 75.16 0.62 

1000 =(K(i-1) - K(i+1))/2 25 0.09 99.61 0.09 

1025 =K(i) – K(i-1) 25 0.01 124.52 0.01 

 

Implied variance 2
iσ of the index options is then estimated38 as shown below: 

( ) ( )



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Equation 27: Theoretical Value of Implied Variance 

 

The terms are from left to right: 

The financing cost of rebalancing the position in underlying shares 

A short position in 1/S* forward contracts struck at S* 

A short position of a logarithmic contract paying In(S*/S0) at expiration 

A long position in (1/K2) put options with price P struck at K, for a continuum of all 

out-of-the-money strikes 

A long position in (1/K2) call options with price C struck at K, for a continuum of all 

out-of-the-money strikes. 

In its discrete form implied variance can be represents as follow: 
2

0,
,2

,

,2 1
12



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Equation 28: Discrete Formula of Implied Variance 

 

 

 

 

                                                 
38 See mathematical appendix for analytical derivation of new methodology. 
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1M options 

Strike Price K(i) ∆ K Call Put Mi.j 
2
,

,

ji

ji

K

K∆
ijiMR  

775 25 125.48 0.11 0.11 0.000004581 

800 25 100.79 0.41 0.41 0.000016023 

825 25 76.7 1.3 1.3 0.000047773 

850 25 54.01 3.6 3.6 0.000124627 

875 25 34.05 8.64 8.64 0.000282257 

900 25 18.41 17.98 18.195 0.000561842 

925 25 8.07 32.63 8.07 0.000235905 

950 25 2.68 52.23 2.68 0.000074274 

975 25 0.62 75.16 0.62 0.000016313 

1000 25 0.09 99.61 0.09 0.000002251 

1025 25 0.01 124.52 0.01 0.000000238 

 

 

2
ij

ij

i K

K∆
∑ iji MR  = 0.06648277 

2
M1σ  = 0.0664772 

 

Then the sub-index iVSTOXX  is calculated as follows: 

2100 ii sVSTOXX ⋅=  

Example: 

7832.250664772.01001 =⋅=MVSTOXX  

 

Apart from the sub-indices for the various individual maturities, the main volatility 

index is determined using a constant remaining time to expiration of 30 days (this 

index is not linked to a specific time to expiration). It is calculated in the same way as 

the old methodology. The main index is determined by linear interpolation of the sub-

indices which are nearest to a remaining time to expiration of 30 days. In this case, 

the two nearest available indices are used, which are as close to the time to 

expiration of 30 calendar days as possible. 
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Therefore the main VSTOXX index level is the result of a linear interpolation between 

iVSTOXX  and 1+iVSTOXX  which encloses or boundaries the remaining lifetime of 30 

days: 

 

fixedii

ifixed
ii

ii

fixedi
ii N

N
NN

NN
VSTOXXT

NN

NN
VSTOXXTVSTOXX 365

1

2
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
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


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
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
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


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−
⋅⋅=

+
++

+

+  

Equation 29: Linear Interpolation of volatility sub-indices  

fixedN  = 30 days. Fixed remaining lifetime of main index 

365N  = time for a standard year = 365 * 24 * 3600 = 31536000 

 

Example: 

 

i  = 1M 

1i +  = 2M 

 

MVSTOXX1  = 25.7832 

MVSTOXX 2  = 25.2326 

 

=VSTOXX   

3888000
31536000

*
18921604311360
18921603888000

2326.251363388.0
18921604311360
38880004311360

7832.250598361.0 22














−
−

⋅⋅+





−
−

⋅⋅  

= 25.2454 

 

3.3 Improvements Incorporated into the New Methodology 

Now there are some improvements in the new methodology which are worthy of 

being mentioned. The new methodology not only uses the four nearby options to the 

at-the-money point, but also utilizes a range of out-of-the money options around this 

point, thus covering and capturing more of the volatility surface (volatility skew) than 

the old methodology. This therefore makes the main volatility index less sensitive to 

individual options. The use of more options within the calculation and the avoidance 

of an option pricing model in the estimation make the calculated volatility value a 

much better estimation of the market participants’ true anticipation of volatility.  
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Furthermore, the volatility index calculated using the new methodology is easier to 

hedge. Implied variance calculated using this methodology can be hedged using a 

static strip of options. But hedging the square root of implied variance, one would 

require to dynamically hedging the strip of options, but this type from hedging is 

effectively much more costly.   

However one should note that implied variance isn’t implied volatility. By considering 

the relationship between the square root of implied variance and implied at-the-

money volatility, one can see strong similarities, but the two concepts are not 

completely identical. While the at-the-money implied volatility (which is derived from 

the old methodology) contains information about at-the-money option prices only, the 

square root of implied variance (using the new methodology) contains information 

about the entire volatility skew, just like implied variance itself. Despite the different 

ways of expressing volatility, implied variance and implied volatility bear strong 

similarities in their usage for trading and hedging. 

As mentioned above, using the square root of implied variance prevents the 

possibility of hedging futures contracts on such an index statically. However, the fact 

that the square root of implied variance includes data for the entire volatility skew 

means that this provides added benefits for dynamic hedging methods in the form of 

significantly higher stability compared to using implied at-the-money volatility. Market 

makers are thus sophisticated enough to hedge products based on the square root of 

implied variance as an underlying. 

Another improvement worthy of mentioning is the fact that the new methodology 

measures expected volatility as financial theorists, risk managers, and volatility 

traders have come to measure it. As a result, the new methodology more closely 

conforms to financial and risk industry practices. It is simpler, yet it yields a more 

robust measure of expected volatility, due to its covering of the volatility skew. 

 

4. The Historical Time Series of the Family of the Volatility Indices 

In order to analyze the properties of the volatility index calculated using the new 

methodology, a time series analysis was executed. This was very important to ensure 

that before launch of the new indices all expectations regarding their properties (like 

anti-correlation between volatility index and equity index) were met by the new 
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calculation method. It was also an ideal opportunity to be able to test different 

constellations of the parameters which were to be used in the productive system. 

The time series were calculated using a statistical, mathematical language and 

environment tool called R©. The source code can be seen in the mathematical 

appendix below. This enabled the acceleration of calculation of the time series of the 

index levels using different constellations of the parameters to be implemented.  

 

4.1 Data Source of the Historical Time Series 

Time series calculations were executed for three equity indices. These were for the 

three new volatility indices of the Deutsche Börse AG which will be launched in the 

second quarter of 2005. They are namely, the VSTOXX, the volatility index on EURO 

STOXX 50 options traded at the Deutsche Börse AG; the new VDAX which is a 

volatility index on the DAX options traded at the Eurex; and finally the VSMI, the 

volatility index on the Swiss Exchange’s equity index SMI options also traded at the 

Eurex. 

The EURO STOXX 50 index provides a blue chip representation of sector leaders 

within the Eurozone which includes industry leaders in countries like Austria, 

Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the 

Netherlands, Portugal and Spain. The unique aspect of this index is that it captures 

approximately 60% of the free-float market capitalization of the Dow Jones EURO 

STOXX Index, which in turn covers approximately 95% of the free-float market 

capitalization of the represented Eurozone countries. The option contract on the 

EURO STOXX 50 is a contract with a value 10 EUR pro EURO STOXX 50 index 

point. There is a minimum price change of 0.1 point which corresponds to 1 EUR. 

The expiration day is always the third Friday of the expiration month at 12:00 CET, as 

long as this day is a trading day. Otherwise it is the first trading day before. The 

series used in the calculation of the implied volatility were the one, two and three 

months to expiration, the three following quarter in chronological order, and finally the 

following two half-year maturities. These are also the same expirations used for the 

VDAX and VSMI implied volatility estimations .  

The DAX® comprises the 30 largest German shares with the highest turnover, 

representing roughly 70 per cent of the overall market capitalization of domestic listed 

companies. The trading in these shares accounts for more than 80 per cent of 

Germany’s exchange-traded equity volumes. Based on its real-time concept, with 
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recalculations carried out every 15 seconds, the DAX® provides a comprehensive 

and up-to-date tracking image of the German stock market.  

The option contract on this index is one of the products at Eurex® with the highest 

trading volume, and ranks as one of the top index options contracts worldwide. The 

option contract’s specifications are almost identical to those of the EURO STOXX 50 

option with the exceptions that the value per DAX index point is 5 EUR and the 

minimum point change has a value of 0.50 EUR. The expiration day is always the 

third Friday of the expiration month at 13:00 CET, as long as this day is a trading day.  

Otherwise it is the first trading day before. The VDAX (old) and VDAX (new) are 

calculated each on the basis of eight expiry months with a maximum time to 

expiration of two years as discussed above.  

The SMI (Swiss Market Index) is Switzerland's blue-chip index, which makes it the 

most important market indicator for the country. It is made up of a maximum of 30 of 

the largest and most liquid Swiss price index’s large- and mid-cap equities. The 

securities contained in the SMI currently represent more than 90 % of the entire 

market capitalization, as well as of 90 % trading volume, of all Swiss equities listed 

on the Swiss Exchange. Because the SMI is considered to be a mirror of the overall 

Swiss stock market, it is used as the underlying index for numerous derivative 

financial instruments such as options, futures and index funds. The option traded at 

Deutsche Börse on the SMI is called the OSMI and it is the underlying for the VSMI 

volatility index. It’s very similar in structure to both options on the EUROSTOXX 50 

and DAX respectively.  The SMI index point is 5 CHF and the minimum point change 

of 0.1 has a value of 1 CHF. The expiration day is always the third Friday of the 

expiration month at 17:20 CET, as long as this day is a trading day.  Otherwise it is 

the first trading day before. 

In order to calculate each volatility index the daily settlement prices (i.e. of all 

qualified calls and puts of the options on the indices traded at the Eurex) were used 

as the data source. The interest rates used in the calculation were the EURIBOR, 

LIBOR, REX and the Swiss Banking Association’s Interest Rates. 

 

4.2 Analysis of Historical Time Series 

Evaluating the results of the implied volatility time series calculation, below clearly 

indicates that the VSTOXX and VDAX are negatively correlated to their 

corresponding underlying, thus confirming them as indicators of market participant’s 
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pessimistic sentiments. One see that the volatility index rises when the equity index 

falls but not always equally proportional. 
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In comparison with the volatility index VIX on the S&P 500 index at the Chicago 

Board of Exchange, which as a matter of fact follows a methodology closely to that of 

the new methodology; one can observe a similar trend in the movement of volatility: 

Correlation between Vstoxx and EuroStoxx 50
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Comparison of Volatility Indices: VSTOXX-VIX
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Therefore investors familiar with the VIX can get used to the VSTOXX without having 

to relearn or rethink. Due to the spread between the two volatility indices, the launch 

of the VSTOXX will open up new possibilities for arbitrage trading between the US 

and the European volatility levels. The VSTOXX runs typically higher than the VIX. 

This is based on the fact that the VIX is derived from the S&P 500 index options 

representing the broad and deep US market. European markets are much less deep 

and therefore more volatile. In addition, the EuroStoxx 50 consists of 10 times fewer 

constituents than the S&P 500. 

A comparison of the times series of the VDAX (volatility index on the DAX) calculated 

using old and new methodologies exhibits only minute differences. This can be seen 

as an added advantage for institutions which have already set in place warrants and 

certificates on the old VDAX. They can continue to use their present hedging 

strategies on the new VDAX. The old VDAX is typically lower that the new VDAX 

mainly because the old VDAX is calculated on a rolling fixed 45 days to expiration 

versus a rolling fixed 30 days to expiration of the new VDAX calculation. This is due 

to the fact that the old VDAX is further down the term structure which is most of the 

time downward sloping.  
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Comparison of Volatility Indices: VDAX (old) and VDAX (new)
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Below, the time series of all calculated indices are illustrated. One can observe that 

the VSMI runs slightly low than the VSTOXX and VDAX.  This is mainly due to some 

unique characteristics of the Swiss economy such as its low interest rates and 

relatively stable market. 
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When implementing dynamic hedging strategies for a derivative product on the 

volatility index, the decision on how many strikes will be used for the hedging process 

is very crucial for the effectiveness of the strategy and the level of the transaction 

cost to implement such a strategy. A hedging strategy which utilizes a small number 

of strikes may prove to be ineffective because, only a small area of the volatility 

surface is considered. This means that the strategy does not fully replicate total 

market consensus of volatility in its calculations. On the other hand, using too many 

strikes (i.e. incorporating more strikes on the volatility surface) in the strategy can 

increase the transaction cost of executing such a strategy to such a high level that is 

becomes unprofitable to implement. The strategy may then be proven to be 

inefficient. Financial institutions and brokerage firms normally use about 10 strikes to 

hedge volatility derivatives based on the square root of implied variance. The 

calculation of the volatility index using the new methodology shows that the means 

along all sub-indices range between 15 and 35 out-of-the-money (OTM) strikes when 

calculating volatility. This ensures the efficiencies of the new methodology in 

estimating volatility and reiterates that it uses a sufficient number of strikes for 

hedging purposes. 
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No. of OTMs used in the calculation of Sub-Indices in last 12 months
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The magnitude, at which volatility alters, can be expressed as the volatility of volatility 

“Vol.Vol.” (i.e. the standard deviation of volatility).  It has been empirically observed 

that the closer an option is to its expiration date, the more volatile is its price. 

Therefore one would expect that if the rolling fixed time to expiration used for 

calculating the volatility index were calculated using a 45 days fixed time to expiration 

and a 30 days fixed time to expiration, the time series calculated with the 30 days 

fixed time to expiration would show a higher volatility of volatility than that of the 45 

days fixed time to expiration time series. This is an important aspect of volatility which 

may prove viable for intra-day arbitrage traders of volatility. This simply means that 

they would be able to lock in higher bid-ask spreads using the volatility index 

calculated on a 30 days fixed time to expiration than that of a volatility index 

calculated using a 45 days fixed time to expiration. 
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Due to the fact that the cut-off point of the minimal tick is set at 0.5, it was necessary 

to evaluate the consequence of such a decision. Therefore a relative tick difference 

analysis between various cut-off points (0.1, 0.3, 0.5 , 0.7, 1 bases points) was 

executed. The results below illustrate that the mean and standard deviation of such 

an action (i.e. loss in contribution) to  the value of volatility is very small. 
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Normally traders aren't interested only in static volatility surfaces. They also want to 

know how the volatility skew will respond to the passage of time and a change in the 

underlying’s value. Therefore, an analysis of the term structures of volatility produced 

by the volatility index calculation, are necessary. 

The volatility term structure (VTS) reflects market expectations of asset volatility over 

different horizons. These expectations change over time, giving a dynamic structure 

to the VTS. As shown below, this structure readily changes over time. This means 

that the volatility skew complicates the tasks of pricing and hedging options. Changes 

in implied volatilities that are expected to accompany changes in the value of the 

underlying over time will impact the option's value. 

Looking at the curves of different volatility term structures one can observe how the 

term structure of volatility (in this case the VSTOXX volatility term structures) 

changes over time when the value of the underlying (EUROSTOXX 50) alters. If one 

assumes that the value of the EUROSTOXX 50 index is on the rise, then the volatility 

tends to fall and VTS moves from curve 1 to curve 2 , i.e. the short end is more 

sensitive to changes and therefore reacts faster than the long end of the VTS. After a 

while the value of the underlying begins to stabilize resulting in a shift of the VTS 

from curve 2 to curve 3. Finally,  when the EUROSTOXX 50 index value is on a 

decline, i.e. volatility is on a rise, the VTS shifts from curve 3 to curve 4.  
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5. Conclusion 

This thesis has introduced one of the most important measures of risk in modern day 

finance. Due to financial market crises of the past, volatility trading has grown to 

unprecedented magnitude. As a result, many trading strategies and concepts have 

evolved which have as their main focus, hedging against market volatility risk. There 

has also been a steady rise in the number financial houses, which only trade in 

volatility.  Volatility is sometimes vaguely used interchangeably with sample standard 

deviation. Although similar, there is a unique difference between the two.  While 

volatility normally assumes a relation to a standard distribution like that of the normal 

distribution function, sample standard deviation does not possess such an 

association.  

Volatility can be measured in two ways. Implied volatility which is forward looking , 

reflects the volatility of the underlying asset given its markets option price. The other 

way is that of historical volatility which is backward looking. This type of volatility is 

derived by estimating volatility using historical market data.  

Three commonly used methods of estimating historical volatility are the Close-Close, 

the High-Low and the High-Low-Open-Close volatility estimators. The last 
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aforementioned volatility estimator is considered to be the most efficient of the three, 

due the fact that it incorporates more market information into it calculation than the 

other two. 

Calculation techniques for estimating implied volatility has multiplied dramatically 

over the last three decades. Using the Black-Scholes Option Pricing Model, one can 

analytically extract a local implied volatility from the option price through the use of an 

approximation process. However, due to the fact that a volatility skew has been 

observed empirically, the assumption of constant volatility over strikes and maturities 

have proven to be a handicap in replicating this observation. 

Innovations in volatility estimation, such as stochastic volatility and auto -regressive 

conditional heteroskedasticity have tried to integrate well known observed properties 

of volatilities like skewness, volatility clustering and mean reversion into models. As a 

result of this trend, metamorphoses of the Black-Scholes model and new concepts 

have appeared on the modeling landscape, some more noble than their counterparts.  

The volatility models which assume stochastic volatility have gain in importance due 

to the fact that their ability to replicate stochastic volatility enables them to reproduce 

many properties of volatility which are quite evident in empirical data, most notably 

fat-tailed distribution and skewness. 

ARCH and in particularly the GARCH models are models which include past 

volatilities into their estimations of future volatilities. It takes into account excess 

kurtosis (fat-tailed distribution) and volatility clustering which are two important 

properties of real market volatility observations. This family of models also assumes 

that the means are conditional, i.e. dependent on observations of the immediate past 

and additionally that they are autoregressive, meaning mean reverting. 

Although these recent innovations in volatility forecasting were catalysts for 

improvements in the estimation process, they have proven to complicate model 

building as a whole. For instance new parameters have to be calculated. However, 

studies like that of Poon and Granger have shown that implied volatility estimators 

performed better than historical and GARCH type estimators. 

Presently volatility trading is mostly executed on the OTC markets in the form of 

volatility and variance swaps. They are practically traded by three genre, namely the 

directional traders, the spread traders and the volatility hedgers.  

Another classical form of trading volatility is through the use of a Straddle. This 

entails the purchasing of both call and put options on the same strike. 
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The advent of volatility indices creates new possibilities to trade pure volatility, i.e. 

trading in a derivative whose underlying is purely exposed to volatility. At the 

Deutsche Termin Börse, which is the predecessor of the Eurex, the VDAX was on of 

the first of such volatility indices and the VOLAX was the first derivative to be based 

on a volatility index. The old methodology used to calculate VDAX is based on 

modified Black-Scholes Option Pricing model. This paper introduced the new 

methodology which will be used in the future to calculate volatility. This new 

methodology is not based on an option pricing model. Instead it calculates volatility 

using solely market data derived from the option prices traded in the underlying 

equity index. Where as the old methodology calculates implied volatility of an ATM 

point using an approximation process on the Black-Scholes model, the new 

methodology calculates volatility, implied out of the market, using several selected 

OTMs calls and puts along with an ATM point, thus including more of the volatility 

surface in its calculation process. Since no option pricing model is used, the volatility 

estimation is purely based on market participants’ behavior stored in the selected 

strikes of the options on the equity index used as the underlying. Using the new 

methodology, the calculation of the volatility index is executed in two distinctive steps. 

Firstly, eight sub-indices based on the first eight maturities up to two years on the 

equity index options are calculated and then secondly, the two nearest sub-indices to 

the rolling fixed 30 days time to expiration are selected for the interpolation process 

which results in a main volatility index being derived. The inclusion of more options 

into the calculation process enables the main volatility index to be less sensitive to 

individual options. Furthermore, the volatility index calculated using the new 

methodology is easier to hedge when its square, the implied variance, is used. In 

addition to it’s simplicity and market near, the new methodology more closely 

resembles the volatility measure used by financial and risk practitioners. It’s simpler 

but yet it yields a more robust measure of expected volatility due to its covering of the 

volatility surface. 

The analysis of the historical data of the volatility indices confirmed that the volatility 

indices do possess an anti-correlation to their respective equity indices. It also 

confirmed that the old and new methodologies possess very similar paths of volatility 

over the empirical period of the time series. This makes it easier for users of the old 

VDAX to adapt to the new methodology.  
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With the introduction of the new VDAX, VSTOXX and VSMI during the second 

quarter of 2005, new and innovative ways of trading in pure volatility will be made 

possible. Futures on the volatility indices are already in plan at the Deutsche Börse 

AG.  
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7. Programming Appendix 

 

Code for Calculating the Historical Time Series of Volatility Indices with R 

Statistical Programming 

START of Codes 
#################################################################################
### global parameters ###################################################### 
############################################################################ 
 
dataDir   = "C:/Vola_Data_OESX"  
currUnderlying  = "ODAX"  
currRates   = "euribor" 
decimalFactor  = 100 
numSubIndex  = 8 
DaysInYear  = 365 
SecondsInYear  = 365*24*60*60 
DiffCloseExpiry  = 4.5 
TickFactor  = 5 
TickSize  = 0.1 
FixedLifetime  = 30 
IndexFile  =       "DAX"  
Hour_sec   = 3600 
Days_Sec   = 86400 
Year_Sec   = 31536000 
Days_Maturities  =  c(1,7,30,60,90,120,150,180,210,240,270,300,330,360,720)  
Int_T_Exp  = Days_Maturities/DaysInYear 
 
 
#################################################################################
### master loop over all dates for which we have data #############################’ 
############################################################################# 
 
for (currYear in 1999:2004) 
{  
 
for (currMonth in 1:12) 
{ 
 
for (currDay in 1:31) 
{ 
 
 myFile  =  paste(dataDir,"/",currYear,"/",currUnderlying,"_",currYear*100+currMonth, 
    ".txt",sep="") 
 if (!file.exists(myFile)) next 
 
 myData = read.table(myFile,header=T,blank.lines.skip=T,as.is=T) 
 myData =
 myData[dimnames(myData)[[1]][myData[,"A_DAY"]==currDay],c(5:ncol(myData))] 
 if ( nrow(myData)==0 ) next #i.e. not a trading day 
 print(paste("Working on: ",currYear*10000+currMonth*100+currDay,sep="")) 
 
 
 
 
 
 
 



 67 

 
############################################################################# 
##################### Next Step: aligning Calls and Puts ############################ 
############################################################################# 
 
 myTmp =
 cbind(myData[dimnames(myData)[[1]][myData[,"A_CALL_PUT_FLAG"]=="C"], 
    c("A_EXP_YEAR","A_EXP_MONTH","A_EXERCISE_PRICE")], 
    rep(NA,nrow(myData)/2),rep(NA,nrow(myData)/2)) 
for (i in 1:nrow(myTmp)) 
 { 
  myTmp[i,4] = myData[(  
   (myData[,"A_EXERCISE_PRICE"] %in% myTmp[i,"A_EXERCISE_PRICE"]) &  
   (myData[,"A_EXP_MONTH"] %in% myTmp[i,"A_EXP_MONTH"]) & 
   (myData[,"A_EXP_YEAR"] %in% myTmp[i,"A_EXP_YEAR"]) & 
   (myData[,"A_CALL_PUT_FLAG"] %in% "C") ), 
   "A_SETTLEMENT_PRICE"]/decimalFactor 
  myTmp[i,5] = myData[(  
   (myData[,"A_EXERCISE_PRICE"] %in% myTmp[i,"A_EXERCISE_PRICE"]) &  
   (myData[,"A_EXP_MONTH"] %in% myTmp[i,"A_EXP_MONTH"]) & 
   (myData[,"A_EXP_YEAR"] %in% myTmp[i,"A_EXP_YEAR"]) & 
   (myData[,"A_CALL_PUT_FLAG"] %in% "P") ),  
   "A_SETTLEMENT_PRICE"]/decimalFactor 
 } 
 myData = myTmp 
 dimnames(myData) = list(seq(1:nrow(myData)), 
      c("Exp_Year","Exp_Month","Strike","CPx","PPx")) 
 
 
#################################################################################
############## 
############## Next Step: Creating Lists containing the data of the first 9 expiries ########## 
#################################################################################
############## 
 
expList  = list(NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 
numExp  = length(unique(myData[,"Exp_Year"]*100+myData[,"Exp_Month"])) 
expVec  =
 sort(unique(myData[,"Exp_Year"]*100+myData[,"Exp_Month"]))[1:numSubIndex] 
 
 
 
############################################################################# 
####### Next Step: Selecting the 8 nearest valid maturities from expList and expMat ######### 
############################################################################# 
 
names(expList) = expVec 
expMat   = cbind(floor(expVec/100),expVec-100*floor(expVec/100), 
    rep(NA,length(expVec))) 
 
 
dimnames(expMat)=  list(expVec,c("Exp_Year","Exp_Month","Exp_Day")) 
allExpiries  = read.table(paste(dataDir,"/Expiration_Dates.txt",sep=""), 
    header=T,blank.lines.skip=T,as.is=T) 
for ( e in 1:nrow(expMat)) 
{ 
 expMat[e,"Exp_Day"]  =  allExpiries[( 
     (allExpiries[,"A_YEAR"] %in% expMat[e,"Exp_Year"]) &  
     (allExpiries[,"A_MONTH"] %in% expMat[e,"Exp_Month"]) 
     ),"A_DAY"] 
 expList[[e]]  = myData[( 
     (myData[,"Exp_Year"] %in% expMat[e,"Exp_Year"]) &  
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     (myData[,"Exp_Month"] %in% expMat[e,"Exp_Month"]) 
     ),c("Strike","CPx","PPx")] 
} 
 
############################################################################# 
#########Selecting relevant interest rates that match the current date##################### 
############################################################################# 
 
i_euribor_current=paste(currDay,currMonth,currYear,sep = ".") 
 
for(i in currYear)  
 {  
                myFile=paste(dataDir,"/",currYear,"/",currRates,"_",i,".txt",sep="")  
                if(!file.exists(myFile)) next  
                print(myFile)  
                euribor=read.table(myFile,header=T,blank.lines.skip=T,as.is=F) 
 
 
############################################################################# 
###################### Printing selected interest rates ############################## 
############################################################################# 
                 
 print(euribor[dimnames(euribor)[[1]][euribor[,1]==i_euribor_current[1]],1:ncol(euribor)])                 
   
 euribor_current=(euribor[dimnames(euribor)[[1]][euribor[,1]==i_euribor_current[1]],1:ncol(eurib
or)]) 
 }      
 
 
############################################################################# 
################## Creating the export file with important parameters ################### 
############################################################################# 
 
DATA=matrix("numeric",nrow=nrow(expMat),ncol=13) 
dimnames(DATA)=list(dimnames(expMat)[[1]],c(dimnames(expMat)[[2]],"Mat_Exp","T_Mat","Ri","PV_f
actor","Abs_Diff","K0","Mid_Px","Fi","Sub_Index","Days_Exp")) 
DATA[,1]=expMat[,1] 
DATA[,2]=expMat[,2] 
DATA[,3]=expMat[,3] 
 
 
 
 
 
 
 
############################################################################# 
################################## Load the library DATE######################### 
############################################################################# 
######################Calculation of the 8 maturities to expiration##################### 
############################################################################# 
 
library(date) 
n=mdy.date(currMonth,currDay,currYear) 
for (e in 1:nrow(expMat)) 
 { 
  m=mdy.date(expMat[e,"Exp_Month"],expMat[e,"Exp_Day"],expMat[e,"Exp_Year"]) 
  DATA[e,13]=m-n   
  DATA[e,4]=(as.numeric(DATA[e,13])*Days_Sec)-DiffCloseExpiry*Hour_sec 
  DATA[e,5]=as.numeric(DATA[e,4])/Year_Sec 
 } 
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############################################################################# 
#################Calculation of parameters for the PV factor interpolation################ 
############################################################################# 
 
for (i in 1:nrow(expMat)) 
 { 
  for (e in 1:length(Int_T_Exp)) 
  { 
   if(Int_T_Exp[e]>as.numeric(DATA[i,5])) break 
  } 
  T_k1<-c(Int_T_Exp[e]) 
  rate_k1=euribor_current[e+1] 
  
  
    
  for (e in 2:length(Int_T_Exp)) 
  { 
   if(Int_T_Exp[e]>as.numeric(DATA[i,5])) break 
  } 
  T_k<-Int_T_Exp[e-1] 
  rate_k=euribor_current[e-1+1] 
  
  
 
############################################################################# 
##########Interpolation of the interest rates to find nearest rates to time to expiration######### 
############################################################################# 
   
  Ri_1=rate_k*(T_k1-as.numeric(DATA[i,5]))/(T_k1-
T_k)+rate_k1*(as.numeric(DATA[i,5])-T_k)/(T_k1-T_k) 
  DATA[i,6]=Ri_1[[1]] 
 
 
 
 
 
 
 
 
############################################################################# 
#####################Calculation of the Present Value Factor######################### 
############################################################################# 
   
  DATA[i,7]=exp(as.numeric(DATA[i,5])*(as.numeric(DATA[i,6])/100)) 
 } 
 
############################################################################# 
######Calculation of the absolute minimal range between call and put, K0 and mid-price####### 
############################################################################# 
 
for(e in 1:length(expList)) 
 { 
                 
############################################################################# 
########################Subtract settlement prices and combine##################### 
############################################################################# 
 
  px_diff=matrix(expList[[e]][,2]-expList[[e]][,3],ncol=1) 
  px_diff=cbind(expList[[e]],px_diff) 
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#################################################################################
############Find Fi,K0,minimum absolute difference and mid price################## 
############################################################################# 
   
  abs_min=c(min(abs(px_diff[,4]))) 
  min_row=px_diff[dimnames(px_diff)[[1]][abs(px_diff[,4])==abs_min],1:ncol(px_diff)]  
  ifelse(dim(min_row)[1]==2,min_row< -min_row[-2,],NA) 
  DATA[e,8]=min_row[1,4] 
  DATA[e,9]=min_row[1,1] 
  DATA[e,10]=c((min_row[1,2]+min_row[1,3])/2) 
 
 DATA[e,11]=c(as.numeric(DATA[e,9])+as.numeric(DATA[e,7])*as.numeric(DATA[e,8])) 
 
 } 
 
############################################################################# 
#########################Calculation of sub-indices################################ 
############################################################################### 
Separate Data according to option type (Call and Put) and then select all OTM options###### 
#####################a call if Kij>Fi and a put if Kij<Fi############################### 
############################################################################# 
 
for (e in 1:length(expList)) 
 {              
  
 
 VStoxx_put=expList[[e]][dimnames(expList[[e]])[[1]][expList[[e]][,"Strike"]<as.numeric(DATA[e,"
K0"]) &  
  expList[[e]][,"PPx"]>=TickFactor*TickSize],c("Strike","PPx")] 
 
 VStoxx_call=expList[[e]][dimnames(expList[[e]])[[1]][expList[[e]][,"Strike"]>as.numeric(DATA[e,
"K0"]) &  
  expList[[e]][,"CPx"]>=TickFactor*TickSize],c("Strike","CPx")] 
  print(VStoxx_put) 
  print(VStoxx_call) 
  dimnames(VStoxx_call)[[2]]=list("Strike","PPx") 
  K0_OOM=c(DATA[e,9],DATA[e,10]) 
  VStoxx_OOM=rbind(VStoxx_put,K0_OOM,VStoxx_call) 
  print(VStoxx_OOM) 
 
############################################################################# 
#################################Calculation of delta K########################### 
############################################################################# 
 
delta_K=matrix("numeric",nrow=nrow(VStoxx_OOM),ncol=1) 
dimnames(delta_K)=list(dimnames(VStoxx_OOM)[[1]],"Delta_K") 
 
for (i in 1:nrow(VStoxx_OOM)) 
 
 { 
 
 if(as.numeric(VStoxx_OOM[i,1])==min(as.numeric(VStoxx_OOM[,1]))) 
  {  
   delta_K[i,1]=as.numeric(VStoxx_OOM[i+1,1])-as.numeric(VStoxx_OOM[i,1]) 
   next 
  } 
  
 if(as.numeric(VStoxx_OOM[i,1])==max(as.numeric(VStoxx_OOM[,1]))) 
  {  
   delta_K[i,1]=as.numeric(VStoxx_OOM[i,1])-as.numeric(VStoxx_OOM[i-1,1]) 
   next 
  } 
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############################################################################# 
####################t hen continue to calculate the remaining delta K################### 
############################################################################# 
  
 delta_K[i,1]<-(as.numeric(VStoxx_OOM[i+1,1])-as.numeric(VStoxx_OOM[i-1,1]))/2 
    
 } 
 
############################################################################# 
###################### Calculation of sub-index ################################### 
############################################################################# 
 
 contri=(as.numeric(delta_K[,1])/as.numeric(VStoxx_OOM[,1])^2)*as.numeric(DATA[e,7])*as.nu
meric(VStoxx_OOM[,2]) 
   
   
 
  contri_A=sum(2*contri/as.numeric(DATA[e,5])) 
  contri_B= c(((as.numeric(DATA[e,11])/as.numeric(DATA[e,9]))-
1)^2/as.numeric(DATA[e,5])) 
  DATA[e,12]=sqrt(contri_A -contri_B) 
 } 
 
 
 
############################################################################# 
##############################Saving the DATA file############################## 
############################################################################# 
 
Datei=paste("C:/Vola_Data_OESX/","V",IndexFile,"_Data",".txt",sep="") 
 
write(t(i_euribor_current), file = Datei,ncolumns=13,append=T) 
write(t(DATA), file =Datei,ncolumns=13,append=T) 
 
############################################################################# 
###############Determine which maturities are closest to the fixed lifetime################ 
############################################################################# 
 
N=FixedLifetime*Days_Sec 
Nt=N/Year_Sec 
 
 
 for (e in 1:nrow(expMat)) 
  { 
   if(as.numeric(DATA[e,5])>Nt) break 
  } 
   T1_2< -as.numeric(DATA[e,5]) 
   d_2<-as.numeric(DATA[e,4]) 
   VStoxx_2<-as.numeric(DATA[e,12])    
 
 for (e in 2:nrow(expMat)) 
  { 
   if(as.numeric(DATA[e,5])>Nt) break 
  } 
   T1_1< -as.numeric(DATA[e-1,5]) 
   d_1<-as.numeric(DATA[e-1,4]) 
   VStoxx_1<-as.numeric(DATA[e-1,12]) 
 
ifelse(VStoxx_1==VStoxx_2,VStoxx_2<-as.numeric(DATA[e,12]),NA) 
ifelse(T1_1==T1_2,T1_2<-as.numeric(DATA[e,5]),NA) 
ifelse(d_1==d_2,d_2<-as.numeric(DATA[e,4]),NA) 
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if(as.numeric(DATA[1,5]<0)) 
 { 
  T1_2< -as.numeric(DATA[3,5]) 
  d_2<-as.numeric(DATA[3,4]) 
  VStoxx_2<-as.numeric(DATA[3,12]) 
  T1_1< -as.numeric(DATA[2,5]) 
  d_1<-as.numeric(DATA[2,4]) 
  VStoxx_1<-as.numeric(DATA[2,12]) 
   
 } 
 
if(as.numeric(DATA[1,5]>0) & as.numeric(DATA[1,5]<Int_T_Exp[1])) 
  { 
   T1_2< -as.numeric(DATA[3,5]) 
   d_2<-as.numeric(DATA[3,4]) 
   VStoxx_2<-as.numeric(DATA[3,12]) 
   T1_1< -as.numeric(DATA[2,5]) 
   d_1<-as.numeric(DATA[2,4]) 
   VStoxx_1<-as.numeric(DATA[2,12]) 
  
 } 
 
############################################################################# 
#############################Calculation of the VStoxx############################ 
############################################################################# 
 
VSTOXX_index=c(currYear,currMonth,currDay,100*sqrt(((T1_1*(VStoxx_1)^2*((d_2-N)/(d_2-
d_1)))+(T1_2*(VStoxx_2)^2*((N-d_1)/(d_2-d_1))))*(Year_Sec/N))) 
print(VSTOXX_index) 
 
 
d=matrix(data=DATA[,12],ncol=8) 
VSTOXX_index=c(VSTOXX_index,d) 
 
Datei=paste("C:/Vola_Data_OESX/","V",IndexFile,".txt",sep="") 
 
write(t(VSTOXX_index), file =Datei,ncolumns =12,append=T) 
 
############################################################################# 
}}} 
END of Code 
 
Example: Input Data of Option on Index 
 
1994 1 3 ODAX C 1994 1 1950 332.4 
1994 1 4 ODAX C 1994 1 1950 309.3 
1994 1 5 ODAX C 1994 1 1950 279.8 
1994 1 6 ODAX C 1994 1 1950 273.5 
 
Example: Input Data of Interest Rates 
  
Date  1Wk 1M 2M 3M 4M 5M 6M 7M 8M 9M  
30.12.1999 3.119 3.171 3.263 3.339 3.413 3.466 3.519 3.577 3.635 3.695 
29.12.1999 3.115 3.18 3.266 3.345 3.417 3.466 3.517 3.577 3.635 3.692  
28.12.1999 4.099 3.537 3.446 3.449 3.474 3.508 3.554 3.604 3.658 3.719  
27.12.1999 4.033 3.538 3.446 3.45 3.474 3.506 3.552 3.603 3.656 3.717 
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Example: Output Data Matrix 
 
4.1.1999 
 
Year M D Ni Ti Ri PV |Min| Fi 

1999 1 15 934200 0.029623 3.24784 1.000963 -7.6 5300 
1999 2 19 3958200 0.125514 3.239365 1.004074 5.6 5300 
1999 3 19 6377400 0.202226 3.235619 1.006565 19.5 5300 
1999 6 18 14239800 0.451541 3.225025 1.014669 -3.1 5350 
1999 9 17 22102200 0.700856 3.215892 1.022795 -12.2 5400 
1999 12 17 29964600 0.950171 3.20856 1.030956 37.7 5400 
2000 6 16 45689400 1.448801 3.146706 1.046645 -82.2 5600 
2000 12 15 61414200 1.947432 3.079545 1.061807 188.1 5400 

 
 
K0 Mid Px Sub-I D rem. 

112.4 5292.393 0.323222 11 
244.7 5305.623 0.311934 46 

328.45 5319.628 0.369674 74 
500.25 5346.855 0.374346 165 

623.3 5387.522 0.326149 256 
735.95 5438.867 0.366329 347 

905.7 5513.966 0.351485 529 
1043.15 5599.726 0.212616 711 

     
 
Example: Output Data of Main Index and its Sub-Indices 
 

Year  Month Day VSMI 
Sub-Index 

1M 
Sub-Index 

2M 
Sub-Index 

3M 
Sub-Index 

1Q 
Sub-Index 

2Q 
1999 1 4 30.07932483 0.334989457 0.293905892 0.355275198 0.344878943 0.276548482 
1999 1 5 29.20032525 0.320161311 0.28738196 0.350393476 0.342081461 0.280957347 
1999 1 6 30.07195368 0.326212453 0.297339729 0.345481761 0.340211701 0.279632143 
1999 1 7 32.46603348 0.353678408 0.321573993 0.372846614 0.354822069 0.303902602 
1999 1 8 32.71084455 0.323453422 0.327397239 0.363730987 0.353210291 0.30171236 

 
Sub-Index 

3Q 
Sub-Index 

1H 
Sub-Index 

2H 
0.325626272 0.277964083 0.172440214 
0.324113172 0.275296012 0.182708849 
0.324633282 0.279314788 0.193071195 
0.332330269 0.287869518 0.196841018 
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8. Mathematical Appendix 

 

Derivation of New Methodology 

To get to the theoretical formula of the new methodology one must first replicate a 

variance swap. A variance swap is a forward contract on realized volatility. The 

replication of a variance swap entails a dynamic hedging procedure of a so-called log 

contract. Assuming that the evolution of stock prices S can be express as: 

t
t

t dZtdtt
S
dS

,...)(,...)( σµ +=   [1] 

where, 

tdS = small change in stock price in time t . 

tS = stock price in time t . 

µ = drift parameter 

σ = volatility 

T = time of maturity 

and assuming the stock pays no dividends, then the theoretical definition of realized 

variance V for a given price history is the continuous integral of the form: 

∫=
T

tdZt
T

V
0

2 ,...)(
1

σ   [2] 

This is an appropriate approximation of the variance of daily returns used in the 

contract terms of most variance swaps. Now, the main idea behind the replication 

strategy is to create a position that, over a small incremental movement of time 

generates a payoff proportional to the adjustment in variance of the stock during that 

time. 

Therefore by applying Ito’s lemma to tSlog , one derives: 

tt dZdtSd σσµ +−= )
2
1

()(log 2   [3] 

and then subtracting equation [3] from equation [1], one derives: 

dtSd
S
dS

t
t

t 2

2
1

)(log σ=−   [4] 
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Note that the dependence on the drift parameter has been eliminated. Summing 

equation [4] over all times from 0 to T results in the continuously-sampled realized 

variance: 

dt
T

V
T

∫≡
0

21
σ  









−= ∫

T
T

t

t

S
S

S
dS

T 0 0

log
2

  [5] 

The identity above illustrates the replication strategy for realized variance. This 

captures the realized variance of the stock from inception to expiration at time T. The 

first term in the brackets outlines the net outcome of continuous rebalancing of a long 

stock position of value 
tS

1
shares. One can take this risk-neutral first term to obtain 

the cost of replication directly. This can be expressed as: 

∫ =
T

t

t rT
S
dS

0

  [6] 

This shows that the shares position, which is continuously rebalanced, has a forward 

price that grows at the risk-less rate. 

The second term within the brackets represents a static short position in a contract 

which at expiration has a payoff equivalent to the logarithm of the total return over the 

period 0 to maturity at time T. By duplicating this log payoff with liquid options (i.e. a 

combination of OTM calls for high stock values and OTM puts for low stock values), 

one can rewrite the log payoff of equation [5] as:  

0

*

*0

logloglog
S
S

S
S

S
S TT +=   [7] 

whereby *S represents the boundary between calls and puts. Keeping the second 

term constant in equation [7], independent of the final stock price TS , means that only 

the first term of equation [7] must be replicated. 
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Future values of 
*

log
S
ST− can be expressed as the follows:  

*

*

*

log
S

SS
S
S TT −−

=−     (forward contract)  

∫ −+
*

0
2 )0,(

1S

T dKSKMax
K

  (put options) [8] 

∫
∞

−+
*

)0,(
1

2
S

T dKKSMax
K

  (call options) 

Note that all contracts expire at time T. 

Now the expected fear value of future variance implied in the OTM call and put 

options can be expressed theoretically as: 









−= ∫

T
T

t

t

S
S

S
dS

E
T 0 0

2 log
2

σ   [9] 

Illustrating equation [9] with the identities of equations [6], [7] and [8] and setting: 

 
rT

T eSS 0=   (the forward value of the stock price at maturity time T) 

and  

1
*

0

*

* −=
−− rTT e

S
S

S
SS

 (the fair value of the forward contract) 

results in the identity which is displayed below: 






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



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


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K

e
S
S

e
S
S

rT
T

σ  [10] 

where P(K) and C(K), respectively denote the current fair price of a put and call 

option of strike K. 

The terms are from left to right: 

1. The financing cost of rebalancing the position in the underlying shares. 

2. A short position in 
*

1
S

 forward contracts struck at *S . 

3. A short position in a log contract paying 








0

*log
S
S

at expiration. 

4. A long position in 
2

1
K

put options with price P struck at K, for a continuum of all 

OTM strikes. 
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5. A long position in 
2

1
K

call options with price C struck at K, for a continuum of all 

OTM strikes. 

Concentrating on the second and third terms in equation [10], which together 

represent the log payoff, we can transform these terms to form the 

identity
2

*

1
1









−

S
F

T
. Now by isolating the second and third terms in equation [10], one 

gets: 


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which gives, using both forward values : 
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and by expressing the forward values with the denotation F : 
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with: 
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introducing the approximation in equation [11] assuming that S* is slightly smaller 

than F: 
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which is equivalent to: 
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Now by substituting 0K for *S , where 0K a strike is slightly smaller than F, denotes the 

boundary between OTM calls and puts: 
2

0

1
1









−=

K
F

T
 [12]  

Terms [4] and [5] of equation [10] can be simplified as follows: 

∫ ∑ ∆→
i

ii
i

rTrT KKP
K

edKKP
K

e )(
1

)(
1

22
 [13] 

 

∫ ∑ ∆→
i

ii
i

rTrT KKC
K

edKKC
K

e )(
1

)(
1

22
 [14] 

Therefore a fusion of equations [12], [13] and [14] is actually an identity of equation 

[10]: 

   

 

i.e. discrete version of the theoretical formula. 

Where, 

1. )( iKM is the price of the OTM (either a put or a call) option of strike iK . 

2. iK∆ is the distance between the midpoints of the strike intervals (i-1,i) and (i,i+1). 

3. F is the forward and 0K is the strike right below the forward. 

 

Mathematical Glossary 

 

Stochastic 

Stochastic is synonymous with "random." The word is of Greek origin and means 

"pertaining to chance" (Parzen 1962, p. 7). It is used to indicate that a particular 

subject is seen from point of view of randomness. Stochastic is often used as 

counterpart of the word "deterministic," which means that random phenomena are not 

involved. Therefore, stochastic models are based on random trials, while 

deterministic models always produce the same output for a given starting condition. 

 

Random Walk  
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A random process consisting of a sequence of discrete steps of fixed length. The 

random thermal perturbations in a liquid are responsible for a random walk 

phenomenon known as Brownian motion,  and the collisions of molecules in a gas 

are a random walk responsible for diffusion.  Random walks have interesting 

mathematical properties that vary greatly depending on the dimension in which the 

walk occurs and whether it is confined to a lattice.  

 

Brownian Motion 

 The random walk motion of small particles suspended in a fluid due to bombardment 

by molecules obeying a Maxwellian velocity distribution (i.e., random walk with 

random step sizes). The phenomenon was first observed by Jan Ingenhousz  in 

1785, but was subsequently rediscovered by Brown in 1828. Einstein used kinetic 

theory to derive the diffusion constant for such motion. 

 

Wiener Process 

A continuous-time stochastic process W(t) for 0≥t with  0)0( =W and such that the 

increment )()( sWtW − is Gaussian with mean 0 and variance st −  for any ts <≤0 , 

and increments for non-overlapping time intervals are independent. Brownian motion 

(i.e., random walk with random step sizes) is the most common example of a Wiener 

process.  

 

Diffusion 

For a continuous random walk , the number of step that must be taken by a particle 

to travel a specific distance. 

 

Gaussian 

In one dimension, the Gaussian function is the probability function of the normal 

distribution,  

 

  
 

A normal distribution in a variate X with mean and variance is a statistic distribution 

with probability function.  
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While statisticians and mathematicians uniformly use the term "normal distribution" 

for this distribution, physicists sometimes call it a Gaussian distribution and, because 

of its curved flaring shape, social scientists refer to it as the "bell curve." 

 

    

  

 

The quantity commonly referred to as "the" mean of a set of values is the arithmetic 

mean 

      

 

Variance 

For a single variate X having a distribution P(x) with known population mean , the 

population variance , commonly also written , is defined as 

      

whereas the population mean and  denotes the expectation value of X. For a discrete 

distribution with N possible values of, the population variance is therefore 

      

whereas for a continuous distribution, it is given by 
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Discrete Distribution 

A statistical distribution whose variables can take on only discrete values. 

 

Continuous Distribution 

A statistical distribution for which the variables may take on a continuous range of 

values. 

Statistical Distribution 

The distribution of a variable is a description of the relative numbers of times each 

possible outcome will occur in a number of trials. The function describing the 

distribution is called the probability function, and the function describing the 

cumulative probability that a given value or any value smaller than it will occur is 

called the distribution function. 

 

 

 


